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Summary

e We propose an approach to incorporate gradient information
into the proposal distribution for estimating parameters in non-
linear state space models.

e This work combines recent advances in Particle MCMC and Se-

quential MC with well-known results from Hamiltonian MCMC.

Bayesian inference in SSM

We are interested in solving the parameter inference problem in

nonlinear state space models (SSM)

Li+1| Tt ~~ f9($t+1|xt)a

Yt| Tt ~ he(yt\ﬂft%

oiven a set of observations y;.7 = {yt}thl and where 6 denotes the param-
eters. The Bayesian approach to this problem requires the computation

of the parameter posterior distribution given by

p(y1:7|0)p(0)
p(?ﬂ:T)

p(Olyrr) =

)

where p(6) and p(y;.7|0) denote the parameter prior and the (often) in-

tractable likelihood function, respectively.

Incorporating gradient information

Main idea: Use Sequential Monte Carlo to estimate the score function
(the gradient of the target distribution) and to incorporate this informa-

tion into the proposal.

This idea results in sampling form a proposal of the form
2
0~ q(0'0") =N ((9'; 0" + %ST(H”), €2> , (2)

for some user-defined step length e. Here, Sy(#”) denotes an unbiased

estimate of the score function obtained using Fisher’s identity by

P

ST(QH) = [ Vlog ]?9"(331;% ?J1:T) ﬁeﬂ(ﬂirﬂym) dzi.7,

where pgs(x1.7|y1.7) denotes the empirical distribution obtained from any
particle smoother. A proposal distribution on the form (2) is commonly

referred to as following a Langevin dynamics.

This problem can be solved by using Particle Marginal Metropolis-

Hastings. Let the proposal and target distributions be denoted by

q(0'10") and w(0) = p(y1.7|0)p(A), respectively. Then, the acceptance
probability is given by

o(.6") = min {17 Ply:.r|0") p(0") ¢(070")°

ply1r|0”) p(6”) q(6'10"),

where p(y1.7|0) denotes the estimated likelihood function obtained from

) (1)

a particle filter.
New samples are often generated via a (Gaussian random walk
(9/ ~ q(e/‘ell> _ ./\/(6)/7 (9//7 Z@),

which 1s known to scale inefficiently in higher dimensions and might result

n a long burn-in period.
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Figure: The steps in one iteration of the L-PMH algorithm.

Example: Stochastic volatility model
Consider the Hull-White model with the form

Tipi|ze ~ N (l’tﬂ; P+, 02) ;
Y|t ~ N (yt7 07 62 GXp(LEt)) )

with the true parameters 6* = {¢*, o™, 5*} = {0.8,0.2,0.7}. To estimate
the parameter ¢ we use 1" = 500 time steps with the known initial state
xo = 0 and N = 1000 particles.
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More information and source code
http://users.isy.liu.se/rt/johda87/

http://www.control.isy.liu.se/



