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Abstract: Gaussian innovations are the typical choice in most ARX models but using other
distributions such as the Student’s t could be useful. We demonstrate that this choice of
distribution for the innovations provides an increased robustness to data anomalies, such
as outliers and missing observations. We consider these models in a Bayesian setting and
perform inference using numerical procedures based on Markov Chain Monte Carlo methods.
These models include automatic order determination by two alternative methods, based on a
parametric model order and a sparseness prior, respectively. The methods and the advantage of
our choice of innovations are illustrated in three numerical studies using both simulated data
and real EEG data.
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1. INTRODUCTION

An autoregressive exogenous (ARX) model of orders n =
{na, nb}, is given by

yt +

na∑
i=1

ani yt−i =

nb∑
i=1

bni ut−i + et, (1)

where ani and bni are model coefficients, ut is a known
input signal and et is white excitation noise, often as-
sumed to be Gaussian and independent of the input signal.
Then, for known model orders n, the maximum likeli-
hood estimate of the unknown ARX coefficients θn =
(an1 · · · anna

bn1 · · · bnnb
) is given by least squares (LS). In

practice, we are often faced with the following problems:

(1) The appropriate order for the model is unknown or
no “best” model order may exist.

(2) The observed data is non-Gaussian in nature, e.g. due
to outliers.

In this work, we propose two hierarchical Bayesian ARX
models and algorithms to make inference in these models,
thereby addressing both of the practical issues mentioned
above. The proposed models differs from (1) in two as-
pects: (i) the excitation noise is modelled as Student’s t
distributed, and (ii) a built-in form of automatic order
selection is used.

The t distribution is more heavy-tailed than the Gaussian
distribution, which means that the proposed ARX model
can capture “jumps” in the internal state of the system
(as an effect of occasional large innovations). Furthermore,
we believe that this will result in an inference method
that is more robust to model errors and outliers in the
observations, a property which we illustrate in this work.
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Research Council through their Discovery Project Program.

We propose two alternative methods to automatically de-
termine the system order n. Firstly, we let the model order
n be a parameter of the Bayesian ARX model. The model
order is inferred alongside the other unknown parameters,
resulting in a posterior probability distribution over model
orders. In the second model, we instead use a sparseness
prior over the ARX coefficients, known as automatic rele-
vance determination (ARD) [MacKey, 1994, Neal, 1996].

Based on the models introduced above, the resulting iden-
tification problem amounts to finding the posterior distri-
bution of the model parameters θn and the order n. This
is done using Markov Chain Monte Carlo Methods (see
e.g. Robert and Casella [2004]), where we are constructing
a Markov Chain with the posterior distribution as its
stationary distribution. We can thus compute estimates
under the posterior parameter distribution by sampling
from the constructed Markov Chain.

For the first model, this is a challenging task as the model
order is explicitly included in the parameter vector. This is
due to the fact that we are now dealing with a parameter
space of varying dimension, which thereby require the
Markov Chain to do the same. This will be solved using
the reversible jump MCMC (RJ-MCMC) algorithm intro-
duced by Green [1995]. The inference problem resulting
from the use of an ARD prior is in the other hand solvable
using standard MCMC algorithms.

The use of RJ-MCMC to estimate the model order and the
parameters of an AR model driven by Gaussian noise, is
fairly well studied, see e.g. [Troughton and Godsill, 1998,
Godsill, 2001, Brooks et al., 2003]. The present work differs
from these contributions, mainly in the use of Student’s t
distributed innovations. Similar models are also considered
by Christmas and Everson [2011], who derive a variational
Bayes algorithm for the inference problem. This approach
is not based on Monte Carlo sampling, but instead makes
use of certain deterministic approximations to overcome
the intractable integrals that appear in the expression for
the posterior distribution.



2. HIERARCHICAL BAYESIAN ARX MODELS

In this section, we present the two proposed hierarchical
Bayesian ARX models both using Student’s t distributed
excitation noise, as described in Section 2.1. The models
differ in how the model orders are incorporated. The
two alternatives are presented in Sections 2.2 and 2.3,
respectively.

2.1 Student’s t distributed innovations

We model the excitation noise as Student’s t-distributed,
with scale λ and ν degrees of freedom (DOF)

et ∼ St(0, λ, ν). (2)
This can equivalently be seen as a latent variable model in
which et is modelled as zero-mean Gaussian with unknown
variance (λzt)

−1 and zt is a gamma distributed latent
variable. Hence, an equivalent model to (2) is given by

zt ∼ G(ν/2, ν/2), (3a)

et ∼ N (0, (λzt)
−1), (3b)

where G(α, β) is the gamma distribution with shape α and
inverse scale β and N (µ, σ2) is the Gaussian distribution
with mean µ and variance σ2.

Note that λ and ν are unknowns, we wish to infer these in
the proposed Bayesian models. As we do not know much
about these parameters, vague (non-informative) gamma
priors are used as in Christmas and Everson [2011]

p(λ) = G(λ;αλ, βλ), (4a)

p(ν) = G(ν;αν , βν), (4b)
where α and β denote hyperparameters that we define
below. Note that these are standard choices resulting from
the property of conjugate priors. This type of priors used in
combination with a suitable likelihood gives an analytical
expression for the posterior, see e.g. Bishop [2006] for other
examples of conjugate priors.

2.2 Parametric model order

The first automatic order determination alternative is to
infer the order n along with the model parameters. Assume
that there exists some maximum order such that na, nb ≤
nmax, resulting in n2max different model hypotheses

Mn : yt = (ϕnt )Tθn + et, (5)

for n = {1, 1}, {1, 2}, . . . , {nmax, nmax}, where

ϕnt = (−yt−1 · · · −yt−na ut−1 · · · ut−nb)
T
, (6)

denotes the known inputs and outputs, θn the model
coefficients, and et the excitation noise that is assumed
to be independent of the input signal. We use a uniform
prior distribution over these model hypotheses with order
n as

p(n) =

{
1/n2max if na, nb ∈ {1, . . . , nmax},
0 otherwise.

(7)

Furthermore, we model the coefficients θn as random
vectors, with prior distributions

p(θn | n, δ) = N (θn; 0, δ−1Ina+nb
), (8)

with the same variance δ−1 for all orders n and where In
denotes the n × n identity matrix. Finally, we place the
standard conjugate gamma prior on δ as

p(δ) = G(δ;αδ, βδ). (9)
All put together, the collection of unknowns of the model
is given by

η = {θn, n, δ, z1:T , λ, ν}. (10)

The latent variables z1:T , as well as the coefficients’ vari-
ance δ−1, can be seen as nuisance parameters which are
not really of interest, but they will simplify the inference.

2.3 Automatic relevance determination

An alternative approach for order determination is to
use ARD. Consider a high-order ARX model with fixed
orders n = {nmax, nmax}. Hence, we overparameterise the
model and the ARX coefficients θ will be a vector of fixed
dimension m = 2nmax. To avoid overfitting, we place a
sparseness prior, known as ARD, on the ARX coefficients

p(θi | δi) = N (θi; 0, δ−1i ), (11)

with the conjugate distribution on the variance

p(δi) = G(δi;αδ, βδ), (12)

for i = 1, . . . , m. The difference between the ARD prior
and (8) is that in (11), each coefficient is governed by a
different variance, which is i.i.d. according to (12). If there
is not enough evidence in the data that the ith parameter
should be non-zero, this prior will favor a large value
for δi which means that the ith parameter in effect will
be “switched off”. Hence, the ARD prior will encourage
a sparse solution; see e.g. MacKey [1994], Neal [1996]
for further discussion. When using the ARD prior, the
collection of unknowns of the model is given by

η = {θ, δ1:m, z1:T , λ, ν}, (13)

where θ is the parameter vector of the overparameterised
model of order nmax.

3. MARKOV CHAIN MONTE CARLO

Assume that we have observed a sequence of input/output
pairs DT = {u1:T , y1:T }. We then seek the posterior
distribution of the model parameters, p(η | DT ), which
is not available in closed form. An MCMC sampler is
therefore used to approximately sample from the posterior
distribution.

The most fundamental MCMC sampler is known as the
Metropolis-Hastings (MH) algorithm. In this method, we
propose a new value for the state of the Markov chain from
some arbitrary chosen proposal kernel. The proposed value
is then accepted with a certain probability, otherwise the
previous state of the chain is kept.

A special case of the MH algorithm is the Gibbs sampler.
In this method, we loop over the different variables of our
model, sampling each variable conditioned on the remain-
ing ones. By using these conditional posterior distributions
as proposals, the MH acceptance probability will be ex-
actly one. Hence, the Gibbs sampler will always accept
its proposed values. As pointed out by Tierney [1994], it
is possible to mix different types of proposals. This will
be done in the sampling strategies employed in this work,
where we use Gibbs moves for some variables and random
walk MH moves for other variables.

A generalisation of the MH sampler is the reversible jump
MCMC (RJ-MCMC) sampler [Green, 1995], which allows
for moves between parameter spaces of different dimen-
sionality. This approach will be used in this work, for the
model presented in Section 2.2. The reason is that when
the model order n is seen as a parameter, the dimension
of the vector θn will change between iterations. An RJ-
MCMC sampler can be seen as employing standard MH
moves, but all variables that are affected by the changed
dimensionality must either be accepted or rejected as a
group. That is, in our case, we propose new values for



{n, θn} as a pair, and either accept or reject both of them
(see step (I-1a) below).

For the ARX model with parametric model order, we
employ an RJ-MCMC sampler using the following sweep 1 ,

(I-1) Order and ARX coefficients:
(a) Draw {θn?

, n?} | zs+1:T , λ, δ,DT .
(b) Draw δ? | θn?

, n?.
(I-2) Innovation parameters:

(a) Draw z?s+1:T | θn
?

, n?, λ, ν,DT .

(b) Draw λ? | θn?

, n?, z?s+1:T , DT .
(c) Draw ν? | z?s+1:T .

If we instead consider the ARX model with an ARD prior
we use the following sweep, denoted ARD-MCMC,

(II-1) ARX coefficients:
(a) Draw θ? | zs+1:T , λ, δ1:m, DT .
(b) Draw δ?1:m | θ?.

(II-2) Innovation parameters:
(a) Draw z?s+1:T | θ?, λ, ν,DT .
(b) Draw λ? | θ?, z?s+1:T , DT .
(c) Draw ν? | z?s+1:T .

The difference between the two methods lies in steps (I-1)
and (II-1), where the parameters related to the ARX
coefficients are sampled. In steps (I-2) and (II-2), we
sample the parameters of the excitation noise distribution,
and these steps are essentially the same for both samplers.

4. POSTERIORS AND PROPOSAL DISTRIBUTIONS

In this section, we present the posterior and proposal
distributions for the model order and other parameters
used by the proposed MCMC methods.

4.1 Model order

Sampling the model order and the ARX coefficients in
step (I-1a) is done via a reversible jump MH step. We
start by proposing a new model order n′, according to
some chosen proposal kernel q(n′ | n). In this work, we
follow the suggestion by Troughton and Godsill [1998] and
use a constrained random walk with discretised Laplace
increments with scale parameter `, i.e.

q(n′a | n) ∝ exp(−`|n′a − na|), if 1 ≤ n′a ≤ nmax, (14)

and analogously for nb. This proposal will favour small
changes in the model order, but allows for occasional large
jumps.

Once we have sampled the proposed model order n′, we
generate a set of ARX coefficients from the posterior
distribution

θn
′
∼ p(θn

′
| n′, zs+1:T , λ, δ,DT ) = N (θn

′
;µθn′ ,Σθn′ ).

(15)

The expressions for the mean and the covariance of this
Gaussian distribution are provided in the subsequent sec-
tion. Now, since the proposed coefficients θn

′
are directly

connected to the model order n′, we apply an MH ac-
cept/reject decision to the pair {θn′

, n′}. The MH accep-
tance probability is given by

1 The reason for why we condition on some variables from time
s+ 1 to T , instead of from time 1 to T , is to deal with the unknown
initial state of the system. This will be explained in more detail in
Section 4.2.

ρnn′ , 1 ∧ p(n
′, θn

′ | zs+1:T , λ, δ,DT )

p(n, θn | zs+1:T , λ, δ,DT )

q(n, θn | n′, θn′
)

q(n′, θn′ | n, θn)

= 1 ∧ p(n
′ | zs+1:T , λ, δ,DT )

p(n | zs+1:T , λ, δ,DT )

q(n | n′)
q(n′ | n)

, (16)

where a ∧ b := min(a, b). Since

p(n | zs+1:T , λ, δ,DT ) ∝ p(y1:T | n, zs+1:T , λ, δ, u1:T )p(n),
(17)

where the prior over model orders is flat according to (7),
the acceptance probability can be simplified to [Troughton
and Godsill, 1998]

ρnn′ = 1 ∧
δ

n′
2 |Σθn′ | 12 exp

(
1
2µ

T
θn′ Σ

−1
θn′µθn′

)
δ

n
2 |Σθn |

1
2 exp

(
1
2µ

T
θnΣ−1θn µθn

) q(n | n′)
q(n′ | n)

.

Note by (21) that the acceptance probability does not

depend on the actual value of θn
′
. Hence, we do not have

to carry out the sampling according to (15) unless the
proposed sample is accepted.

4.2 ARX coefficients

The ARX coefficients are sampled in step (I-1a) and step
(II-1a) of the two proposed MCMC samplers, respectively.
In both cases, we sample from the posterior distribution
over the parameters; see (15). In this section, we adopt the
notation used in the RJ-MCMC sampler, but the sampling
is completely analogous for the ARD-MCMC sampler. A
“stacked” version of the linear regression model (5) is

ys+1:T = Φnθn + es+1:T , (18)

where the regression matrix Φn is given by

Φn =

 −ys · · · −ys−na us · · · us−nb+1
...

. . .
...

...
. . .

...
−yT−1 · · · −yT−na uT−1 · · · uT−nb

 . (19)

Here, we have take into account that the initial state of the
system is not known, and only use observations from time
s + 1 to T in the vector of observations on the left hand
side of (18). For the RJ-MCMC sampler s = max(na, n

′
a)

and for the ARD-MCMC sampler s = nmax.

Let ∆−1 be the covariance matrix for the parameter prior,
either according to (8) or according to (11), i.e.

∆−1 =

{
δIna+nb

for RJ-MCMC,
diag(δ1, . . . , δm) for ARD-MCMC.

(20)

Since we condition on the latent variables zs+1:T (and the
varince parameter λ−1), the noise term in (18) can be
viewed as Gaussian according to (3b). It follows that the
posterior parameter distribution is Gaussian, as already
stated in (15), with mean and covariance given by

µθn = Σθn(Φn)T(λzs+1:T ◦ ys+1:T ), (21a)

Σθn =
(
(Φn)T diag(λzs+1, . . . , λzT )Φn + ∆

)−1
, (21b)

respectively. Here, ◦ denotes elementwise multiplication.

4.3 ARX coefficients variance

We now derive the posterior distributions for the ARX
coefficients variance(s), sampled in steps (I-1b) and (II-1b)
for the two models, respectively.

Consider first the model described with parametric model
order. The ARX coefficients variance δ−1 is a priori
gamma distributed according to (9). The likelihood is
given by (8) and an analytical expression for the posterior



distribution is easily found as the gamma distributed is a
conjugate prior. Thereby motivating the standard choice
of a gamma distributed prior for the inverse variance in
a Gaussian distribution. It follows from standard results
(see e.g. Bishop [2006, p. 100]) that

p(δ | θn, n) = G(δ;αpost
δ , βpost

δ ), (22)

with hyperparameters

αpost
δ = αδ +

na + nb
2

, and βpost
δ = βδ +

1

2
(θn)Tθn.

(23)

Similarly, for the ARD model, we get from the prior (12)
and the likelihood (11), that the posterior distributions for
the ARX coefficients variances are given by

p(δi | θi) = G(δi;α
post
δi

, βpost
δi

), (24)

with hyperparameters

αpost
δi

= αδ +
1

2
, and βpost

δi
= βδ +

1

2
θ2i , (25)

for i = 1, . . . , m.

4.4 Latent variance variables

Let us now turn to the parameters defining the excitation
noise distribution. We start with the latent variance vari-
ables zs+1:T . These variables are sampled analogously in
steps (I-2a) and (II-2a). The latent variables are a priori
gamma distributed according to (3a) and since they are
i.i.d., we focus on one of them, say zt. Note that we here
once again have chosen a prior distribution conjugate to
the likelihood.

The likelihood model for zt is given by (5), where the
model order now is fixed since we condition on n (in the
ARD model, the order is always fixed)

p(yt | zt, θn, n, λ, ν, ϕnt ) = N (yt, (ϕ
n
t )Tθn, (λzt)

−1). (26)

It follows that the posterior is given by

p(zt | θn, n, λ, ν,DT ) = G(zt;α
post
z , βpost

zt ), (27)

with the hyperparameters

αpost
z =

1

ν
+

1

2
, and βpost

zt =
ν

2
+
λ

2
ε2t . (28)

Here, the prediction error εt is given by

εt = yt − (ϕnt )Tθn. (29)

We can thus generate z?s+1:T by sampling independently
from (27) for t = s+ 1, . . . , T .

4.5 Innovation scale parameter

The innovation scale parameter λ is sampled in steps (I-2b)
and (II-2b). This variable follows a model that is very
similar to zt. The difference is that, whereas the individual
zt variables are i.i.d. and only enter the likelihood model
(5) for a single t each, we have the same λ for all time
instances. The posterior distribution of λ is thus given by

p(λ | θn, n, zs+1:T , DT ) = G(λ;αpost
λ , βpost

λ ), (30)

with

αpost
λ = αλ +

T − s
2

, (31a)

βpost
λ = βλ +

1

2
εTs+1:T (zs+1:T ◦ εs+1:T ), (31b)

where the prediction errors εs+1:T are given by (29).

4.6 Innovation DOF

The DOF ν, sampled in steps (I-2c) and (II-2c), is a priori
gamma distributed according to (4b). The likelihood for
this variable is given by (3a). It follows that the posterior
of ν is given by

p(ν | zs+1:T ) ∝ p(zs+1:T | ν)p(ν)

=

T∏
t=s+1

G(zt; ν/2, ν/2)G(ν;αν , βν). (32)

Unfortunately, this does not correspond to any standard
distribution. To circumvent this, we apply an MH ac-
cept/reject step to sample the DOF. Hence, we propose
a value according to some proposal kernel ν′ ∼ q(ν′ | ν).
Here, the proposal is taken as a Gaussian random walk,
constrained to the positive real line. The proposed sample
is accepted with probability

ρνν′ = 1 ∧ p(ν
′ | zs+1:T )

p(ν | zs+1:T )

q(ν | ν′)
q(ν′ | ν)

, (33)

which can be computed using (32).

5. NUMERICAL ILLUSTRATIONS

We now give some numerical results to illustrate the
performance of the proposed methods. First, we compare
the average performance of the MCMC samplers with
least squares (LS) in Section 5.1. These experiments are
included mostly to build some confidence in the proposed
method. We then illustrate how the proposed methods are
affected by outliers and missing data in Section 5.2. As a
final example, in Section 5.3 we illustrate the performance
of the RJ-MCMC on real EEG data.

5.1 Average model performance

We evaluate the proposed methods by analysing the aver-
age identification performance for 25, 000 randomly gen-
erated ARX systems. These systems are generated by
sampling a uniform number of poles and zeros (so that the
resulting system is strictly proper) up to some maximum
order, here taken as 30. The poles and zeros are generated
uniformly over a disc with radius 0.95.

For each system, we generate T = 450 observations 2 .
The input signal ut is generated as Gaussian white noise
with standard deviation 0.1. The innovations are simulated
from a Student’s t distribution, et ∼ St(0, 1, 2). The
hyperparameters of the model are chosen as αλ = βλ = αν
= βν = αδ = βδ = 0.1.

The data is split into three parts with 150 observations
each. The first two parts are used for model estimation,
and the last part is used for testing the model. For the
LS method, we employ cross validation by first estimating
models for all possible combinations of model orders na
and nb, such that both are less than or equal to nmax =
30, on the first batch of data. We then pick the model
corresponding to the best model fit [Ljung, 1999, p. 500].
The full estimation data set (300 observations) is then
used to re-estimate the model parameters. For the MCMC
methods, we use all the estimation data at once, since these
methods comprise automatic order determination and no
explicit order selection is made.

2 When simulating the systems, we run the simulations for 900 time
steps, out of which the first 450 observations are discarded, to remove
the effect of transients.
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Fig. 1. Left: The difference in model fit between the RJ-
MCMC and LS methods. Right: One particular ran-
domly generated ARX model with a large innovation
outlier that affects the system output.

The average model fit for the test data, for the 25,000 ARX
systems is given in Table 1. We note a slight statistically
significant improvement by using the RJ-MCMC method
in comparison with the standard LS technique. Also, the
RJ-MCMC appear to perform better than the simpler
ARD-MCMC method (for this model class). Therefore, we
will focus primarily on the former method in the remainder
of the numerical illustrations.

Method mean CI
LS 77.51 [77.21 77.81]
RJ-MCMC 78.24 [77.95 78.83]
ARD-MCMC 77.73 [77.47 78.06]

Table 1. The average and 95% confidence intervals
(CI) for the model fit (in percent) from experiments

with 25, 000 random ARX models.

In the left part of Figure 1, the differences in model fit
between RJ-MCMC and LS for all 25,000 systems are
shown. We note that there are no cases with large negative
values, indicating that the RJ-MCMC method performs at
least as good as, or better than, LS for the vast majority
of these systems. We also note that there are a few cases
in which LS is much worse that RJ-MCMC. Hence, the
average model fit for LS is deteriorated by the fact that the
method fails completely from “time to time”. This is not
the case for the proposed RJ-MCMC sampler (nor for the
ARD-MCMC sampler), which suggests that the proposed
method is more robust to variations in the data.

It is interesting to review a typical case with a large dif-
ference in model fit between the two methods. Data from
such a case is shown in the right part of Figure 1. Here,
we see a large jump in the system state. The ARX model
with Student’s t distributed innovations can, due to the
heavy tails of the noise distribution, accommodate for the
large output values better than the model with Gaussian
noise. The model fit for this system was 46.15% for the
RJ-MCMC method and 14.98% for the LS methods.

It is important to note that the use of the LS method
is due to its simplicity. For the problem under study the
LS method is the maximum likelihood (ML) solution to
an ARX model with Gaussian noise and a given model
order. The ML problem can of course also be posed for
the case where t distributed noise is assumed. Another
alternative would be to make use of a prediction error
method with a robust norm, such as the Huber or Vapnik
norm. A cross validation scheme could also be used to
handle the automatic order determination in this setting
by an exhaustive search of the model set.

5.2 Robustness to outliers and missing data

We continue by evaluating the proposed models and infer-
ence algorithms in the presence of missing data or outliers
in the observations. The hypothesis is that, due to the use
of Student’s t innovations in the model, we should be more
robust to such data anomalies than an LS estimate (based
on a Gaussian assumption).

In these experiments, the innovations used in the data
generation are drawn from a Gaussian distribution with
unit variance. We then add outliers or missing observations
to the outputs of the systems (i.e. this can be interpreted
as an effect of sensor imperfections or measurement noise).
This is done by randomly selecting between 1–3 % of the
observations in the estimation data, which are modified as
described below. In the first set of experiments we add out-
liers to the selected observations. The size of the outliers
are sampled from a uniform distribution U(−5y+, 5y+),
with y+ = max |yt|. In the second set of experiment,
we instead replace the selected observations by zero-mean
Gaussian noise with variance 0.01. This is to represent
missing data due to sensor errors, resulting in values close
to zero compared with the actual observations.

For each scenario, we generate 1, 000 random ARX systems
and simulate T = 450 observations from each. We then
apply the proposed MCMC samplers and LS with cross
validation, similarly to the previous sections, but with the
modifications described above. Table 2 gives the average
results over the 1, 000 randomly generated models with
added outliers and missing values, respectively. Here, we
have not corrupted the test data by adding outliers or
missing observations, not to overshadow the results 3 .

The mean results show statistically certain differences
between the LS approach and the two proposed methods.
We conclude that, in general the proposed MCMC based
methods are more robust to data anomalies such as missing
observations or outliers.

Outliers Missing data
Method mean CI mean CI
LS 39.13 [37.86 40.41] 75.20 [74.00 76.40]
RJ-MCMC 70.54 [69.03 72.04] 80.18 [78.74 81.62]
ARD-MCMC 72.46 [71.02 73.91] 81.57 [80.24 82.90]

Table 2. The mean and 95% CIs for the model fit (in
percent) from 1, 000 systems with outliers and missing

data, respectively.

In Figure 2, the predicted versus the corresponding ob-
served data points are shown for the RJ-MCMC method
(stars) and the LS approach (dots), for two of the data
batches. It is clearly visible that the LS method is unable to
handle the problem with outliers, and the predictions are
systematically too small (in absolute value). LS performs
better in the situation with missing data, but the variance
of the prediction errors is still clearly larger than for the
RJ-MCMC method.

5.3 Real EEG data

We now present some results from real world EEG data,
which often include large outliers (and therefore deviates
from normality). Therefore this data serves as a good
example for when the propose methods are useful in
a practical setting. The deviations from normality can

3 If an outlier is added to the test data, the model fit can be
extremely low even if there is a good fit for all time points apart
from the one where the outlier occurs.
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Fig. 2. Predictions vs. observations for data with outliers
(left) and data with missing observations (right). The
model fit values for the outlier data example are
91.6% for the RJ-MCMC (stars) and 40.2% for LS
(dots). The corresponding values for the missing data
example are 94.4% and 75.7%.

be seen in Figure 3, by observing the signal and the
Q-Q plot, i.e. a comparison between two distributions
by plotting their quantiles against each other [Wilk and
Gnanadesikan, 1968].

The RJ-MCMC method with Student’s t innovations is
used to estimate an AR model for this data set. The
resulting estimated posterior density for the model order
is shown in the lower parts of Figure 3. Knowing this
posterior, allows for e.g. weighting several different models
together using the estimated density values.

In addition, we can also estimate the posterior density
of the DOF of the innovations. This density is useful for
quantifying deviations from normality, as the Gaussian dis-
tribution is asymptotically recovered from the Student’s t
distribution with infinite DOF. As the maximum posterior
value is attained at approximately 4.0 DOF, this confirm
non-Gaussian innovations.

We have thereby illustrated the usefulness of the proposed
methods, both for parameter inference but also for esti-
mating useful posterior densities not easily obtainable in
the LS framework.
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Fig. 3. Upper: the EEG signal collected on one specific
channel and patient. Lower left: The estimated poste-
rior model order density from the RJ-MCMC method.
Lower right: The Q-Q plot for the data set. The model
fit for the results in this figure is 85.6%.

6. CONCLUSIONS AND FUTURE WORK

We have considered hierarchical Bayesian ARX model
with Student’s t distributed innovations. This was con-
sidered to be able to capture non-Gaussian elements in
the data and to increase robustness. Furthermore, both
models contain a mechanism for automatic order selection.
To perform inference in these models, we also derived two
MCMC samplers: a reversible jump MCMC (RJ-MCMC)
sampler and a standard Gibbs sampler.

Three numerical examples have been presented, providing
evidence that the proposed models provide increased ro-
bustness to data anomalies, such as outliers and missing
data. We have shown that the proposed methods perform
on average as good as (ARD-MCMC) or better (RJ-
MCMC) than LS with cross validation, when the true
system is in the model class. Another benefit with the
proposed methods is that they provide a type of informa-
tion which is not easily attainable using more standard
techniques. As an example, this can be the posterior dis-
tribution over the model orders, as illustrated in Figure 3.

There are several interesting avenues for future research,
and we view the present work as a stepping stone for
estimating more complex models. The next step is to
generalize the proposed methods to encompass e.g. OE
and ARMAX models. A more far reaching step is to
generalize the methods to nonlinear systems, possibly by
using Particle MCMC methods [Andrieu et al., 2010]. It
is also interesting to further analyse the use of sparseness
priors in this setting.
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