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Abstract— We are concerned with the problem of detecting
an overtaking vehicle using a single camera mounted behind
the ego-vehicle windscreen. The proposed solution makes use
of 1D optical flow evaluated along lines parallel to the motion
of the overtaking vehicles. The 1D optical flow is computed by
tracking features along these lines. Based on these features, the
position of the overtaking vehicle can also be estimated. The
proposed solution has been implemented and tested in real time
with promising results. The video data was recorded during test
drives in normal traffic conditions in Sweden and Germany.

I. INTRODUCTION

The development of active safety systems for vehicles is
progressing rapidly as sensors such as cameras become more
standard. In this paper, we address the problem of detecting
and positioning overtaking vehicles. The ability to detect and
estimate the position of vehicles relative to the ego-vehicle
is crucial for analyzing the scene. The information can be
used to take action if a dangerous situation arises, e.g. if an
overtaking car cuts in too closely. For functionality of this
kind, early detections of these events are essential for quick
actions. Hence, the detection rate must be high, since each
missed detection may pose a large safety risk.

[1] proposes a system which uses fixed detection zones
and differential images to detect incoming cars. If a detection
is made, the detection area is used as a template which is
tracked in the next frame. Another approach for detection is
to estimate 2D optical flow. [2] uses a fixed detection area
in which 2D feature points are found. The feature points are
tracked between consecutive frames using the Lucas-Kanade
algorithm [3]. If more than a certain fraction of the motion
vectors are moving in a particular direction, implying that
the car is moving into the image, it is considered to be a
detection. The 2D optical flow solution is combined with a
radar system (sensor fusion) in order to get more reliable
results. [4] implements a system using planar parallax and
improves the robustness by using an inertial sensor as
additional input in order to compensate for shakiness during
a normal drive.

In this paper, we introduce a new, computationally efficient
method for detecting overtaking vehicles. Although previous
works show promising results, we seek a computationally
cheaper solution with a lower complexity. While the de-
tection of overtaking vehicles is of great importance, this
problem is a small part of a system with limited resources,
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so a fast and reliable approach is needed. Our contribution
consists of methods for detecting 1D feature points and a
way of interpreting the tracked feature result for detecting
overtaking vehicles. Our idea is further illustrated in Figu-
re 1. It is also demonstrated that additional information can
be extracted from the system, allowing us to estimate the
position of the overtaking vehicle relative to the ego-vehicle.

The detection performance is evaluated using real video
data collected during test drives. The evaluations show high
detection rate and low false positive rate. Due to its low
complexity, it is fast which allows it to be used in real time.

Fig. 1: Overview of the idea. 1D feature points are detected
and tracked along so called detection lines (blue lines to the
left). The slope of these lines are such that they intersect in
the vanishing point, meaning that an overtaking vehicle is
moving along these lines.

II. PROBLEM FORMULATION

We are interested in the possibility of detecting overtaking
vehicles using a single camera setup. The information could
be used to initiate or improve other algorithms already im-
plemented such as vehicle tracking. If possible, the solution
should also be able to estimate the relative position xc, yc
and relative speed ẋc, ẏc of the overtaking vehicle compared
to the ego-vehicle (see Figure 2).

To simplify the problem, we make the assumption that the
overtaking vehicle is moving in parallel to the ego-vehicle.
This is valid throughout most of the overtaking events,
especially in the beginning when the vehicle is first seen
in the image. In a central-perspective view, this means that
the overtaking vehicle will be moving towards the vanishing
point (VP) in the image. This can be exploited using a line
that intersects a starting point and the VP, as the axis along
which the optical flow can be estimated.
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Fig. 2: An overview of the coordinate frame used. xc and yc
are the coordinates of the right back corner of the overtaking
vehicle, in the ego-vehicle coordinate system; ẋc and ẏc are
their time derivatives.

As the overtaking vehicle is moving further into the image,
it will be moving along this line. With this knowledge, a set
consisting of several detection lines is created in a region
near the edge of the image, which is illustrated in Figure 1.
In general, two regions are needed on separate sides of the
frame due to multiple lanes or left and right hand traffic. In
this paper, we use only the left region as proof of concept.

We split our solution into two parts, one for detection and
one for position estimation. The detection part is applied to
every frame, while the position estimation is activated once
an overtaking vehicle has been detected. The two parts are
briefly outlined below.
Detection

1) Create regions of interest where incoming vehicles are
searched for. The regions are placed at fixed positions
along the edges of the frames. See Figure 1.

2) In each frame, detection lines are created within the
detection regions. The intensity values along each line
are bilinearly interpolated. In order to reduce noise and
effects due to shakiness, the intensity value of each pixel
on the line is averaged with its neighbours orthogonal
to the line.

3) One-dimensional features are found along each line.
The features are tracked into the next frame using a
Newton-Raphson algorithm.

4) If the ratio of tracked features that are moving in a
certain direction is above a specified threshold τd, a
detection is considered to be made.

Position estimation
1) If a detection is made, 2D features are located within

the detection zone.
2) The feature points are tracked in the next frame using

the Lucas-Kanade algorithm [3]. Feature points can be
fused if they are close to each other.

3) Using the information about the position and displace-

ments of the 1D feature points, the position of the car
can be estimated.

III. DETECTION LINES

We start by deciding a region of interest (ROI) where
overtaking vehicles can be detected. The image coordinates
for the ROI, i.e. the top and bottom left and the right
coordinates, can be determined from world coordinates, e.g.,
by specifying the closest lateral overtaking distance and
that the ROI should range from the ground and up to a
specified maximum height. As overtaking vehicles should
be detected as soon as possible, the region is placed to the
far left of the image. We then estimate the VP using existing
algorithms, e.g. [5], whereafter the VP is used to define a
set of lines, originating from the left edge of the frame and
pointing towards the VP (see Figure 1), which will be parallel
assuming a flat road. These lines are referred to as detection
lines. For each detection line, the intensity values along the
lines are bilinearly interpolated. The line creation phase is
summarized in Algorithm 1. Once the detection lines have
been created, we detect features on each of the lines.

Algorithm 1 Create the detection lines
Input: Vanishing point vp, camera height above ground zcam,
closest lateral distance ymin, maximum height zmax, ROI left edge
plx, ROI right edge prx, number of lines n`, line step length `s.
Output: Detection lines with interpolated values.

• Calculate ROI bottom left and top left corners
pbl = [plx, vpy + zcam

ymin
(vpx − plx)]

ptl = [plx, vpy + zcam−zmax
ymin

(vpx − plx)]
• Calculate line spacing margin m = (pbly − ptly )/(n` − 1)
• for k in 0,. . . ,n` − 1 do

- Compute starting point, ps = pbl + [0,mk].
- Evaluate the end point, pe = [prx, psy+

prx−plx
vpx−plx

(vpy−psy)].
- Interpolate intensity values on the line between [ps, pe] with

step length `s.
end for

IV. ONE-DIMENSIONAL FEATURES

In the two-dimensional case, there are several common
methods to find feature points, e.g. SIFT [6], FAST [7] and
the Shi-Tomasi detector [8]. In the one-dimensional case,
however, there are not so many standard methods available.

A. Feature detection

Here, we evaluate three alternative feature point types,
listed in Table I. An example of outputs from each of the
three approaches can be seen in Figure 3, where the signal
consists of interpolated intensity values from one of the
detection lines.

The slope approach may be the most intuitively appealing,
since it often corresponds to an edge in the image. The stan-
dard deviation (STD) approach usually provides the highest
number of points, but is harder to grasp intuitively. Here,
the slopes approach is selected since it provides sufficiently
many feature points per line and gives interpretable results.



Name Description
Extrema Find all minima and maxima of the interpolated signal

values (i.e. first derivative close to zero) where the
magnitude of the second derivatives exceed a certain
threshold.

STD Find all minima and maxima of the interpolated signal
values with a standard deviation above a specified thres-
hold within an interval around the extreme point.

Slopes Find all minima and maxima of the gradient of the
interpolated signal values.

TABLE I: Methods of finding one-dimensional features.
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Fig. 3: Detected features for the interpolated pixel values
along a detection line for three different approaches.

Algorithm 2 Feature detection
Input: Interpolated values from line `, slope threshold τs, suppres-
sion distance ds.
Output: A set of feature points f .

• Estimate first and second derivative of the line ` using finite
difference.

• Extract points with a second derivative close to zero to a set F .
• for each point p in F do

- If first derivative in point p is close to zero, remove p from
the set F .

- If the distance to the previous point is below the threshold
ds, remove p from the set F .

end for

The detected feature points are clustered by a simple
distance interval merging. This is done by starting with the
leftmost feature point and removing all features within an
interval to the right of the feature point. When the feature
points are removed, we move on to the next remaining
feature point, etc. The slope feature detection method is
summarized in Algorithm 2. The final set of selected feature
points is then passed on to the tracker.

B. Feature tracking

A neighbourhood of 15 pixels around each feature point is
cut out and used as a template. We then search for the best

match of the template along the corresponding detection line
in the next frame. We choose the L2-norm as the distance
metric and define the distance ε(h) according to

ε(h) =
∑
x∈T

|F (x+ h)−G(x)|2, (1)

where T denotes the relevant interval around feature point
x, F denotes the previous frame, G the current frame, and
h denotes the translation offset between the two frames. The
distance (1) is iteratively minimized to find h by,

h0 = 0,

hk+1 = hk +

∑
x∈T F

′(x+ hk)[G(x)− F (x+ hk)]∑
x∈T F

′(x+ hk)2
.

(2)

A feature point is considered successfully matched if the
distance ε(h) is below a specified threshold τm. If the
difference threshold has not been met within a specified
maximum number of iterations, or if the step length is
below a limit and the difference threshold is not met, the
tracking is considered to have failed. The tracking algorithm
is summarized in Algorithm 3. The threshold τm can be
chosen based on test data.

Algorithm 3 Feature movement estimation
Input: Current frame G, previous frame F, the vanishing point vp,
number of lines nl, line margins m and start position p. Error
threshold τm and maximum number of iterations nmax.
Output: A set of feature points f with corresponding offsets.

• Create detection lines set L in previous and current frame as
described in Algorithm 1.

• for each line l in L do
- Check if the line standard deviation is large, if not continue

with next.
- Detect features along the detection line in previous frame

using Algorithm 2.
– for each feature point p do

+ Find the feature points displacement in the current
frame using (2).

end for
end for

Figure 4 presents an example of successfully tracked
features. We see that there is a large number of successfully
tracked features. On average, 61.2% of all features are
successfully tracked, i.e. with ε(h) converging below τm
within maximum number of iterations. While this might
seem low, a large number of features could be extracted in
each frame due to the low complexity of our solution. In our
tests, 50 detection lines have been used, setting a maximum
of six features on each line, rendering up to 300 features in
each frame. This would give us more than 150 successfully
tracked features.

C. Issue of repeating patterns

A common problem is repetitive patterns in the signal.
An example of this is the poles separating highway lanes.
This can also be seen in Figure 3, where each dip represents
a pole. During the matching phase, a valid solution can be



Fig. 4: Tracked features on an overtaking vehicle. Red
lines represent features moving towards the vanishing points,
green lines moving away from the vanishing point and yellow
line were unsuccessfully tracked.

found in each of the dips. Due to the short distances between
poles, the matching will be done incorrectly if the ego-
vehicle is moving too fast. An example of the pole problem
can be seen in Figure 5.

Fig. 5: Sequence illustrating the repeating pattern problem.
The poles are marked by an id number to follow them
between the frames. As can be seen, pole nr 1 is falsely
matched with pole nr 2 in the middle frame. This is because
pole nr 2 has moved such that the distance to the previous
position of pole nr 1 is shorter than the distance pole nr 1
has moved between the frames.

Our approach to solve the issue is to investigate if the
tracking result is unique. This is done by using multiple
starting points for each feature. We first detect features in
both the previous and the current frame. The feature points
from the previous frame are then one by one tracked in the
current frame, using the feature points from the current frame
as starting points. The tracked feature point is discarded if
more than one match is found. This works well as most
features have a straightforward correspondence.

Another possible countermeasure is to use a track-retrack
approach. First, the feature points from the previous frame
are matched in the current frame. When the feature points
have been successfully tracked, the tracking is applied in
reverse, using the matches in the current frame as start. If
the result of the retrack is approximately the original starting
point, the tracking is considered successful.

D. Detecting a vehicle

The movement of each feature along each line is now
known. During normal driving, i.e. not during an overtaking
situation, all features will in theory be moving away from
the vanishing point. If a vehicle is overtaking, all feature
points on the line that resides on the vehicle will instead be
moving towards the vanishing point. When the vehicle has
moved sufficiently far into the image, most of the feature
points will be on the vehicle.

We choose to detect an overtaking vehicle by checking if
a majority of the tracked feature points are moving towards
the vanishing point. Normally, a large number of features can
be found in the background due to well-textured common
objects such as trees, signs, buildings etc. In order to reduce
the effect of these, we start evaluating the ratio with a group
consisting of the first twenty lines counting from the bottom.
If a detection is not made, an additional line is added and the
ratio is recalculated. This is done until a detection is made
or if all lines have been added to the group. The detection
algorithm is summarized in Algorithm 4.

Algorithm 4 Vehicle detection
Input: Feature point set F . Total number of features ntot, start size
ns of detection set and detection threshold τd.
Output: Detection decision.

• Create initial set O with ns detection lines starting from
bottom.

• while no detection and not all lines included in set O do
- Add new line to set O
- Extract tracked feature translation offsets from F corre-

sponding to lines in set O. (tracked in Algorithm (3))
- Calculate ratio r of features moving towards VP.
- If ratio r is above τd, set detection found and break.
end while

• Return detection result

V. POSITION ESTIMATION

Having detected an overtaking vehicle, the next step would
be to estimate its position (in particular, the position of
its closest corner(xc, yc)) and longitudinal velocity. To do
this, we can realize that the detected feature points give a
reasonable estimate of the image position of the vehicle.
Using a flat earth assumption, which will in most cases be
a good approximation at short distances, we can transform
this image position to a world position. This can be used as
a measurement in an Extended Kalman Filter (EKF), using
a simple vehicle model with the state variables (xc yc ẋc ẏc)
(as defined in Figure 2).

VI. EXPERIMENTAL RESULTS

The results reported here are obtained using a MATLAB
implementation, which was implemented as a proof of con-
cept. In order to prove real-time performance, the algorithms



have been ported to C++. The latter implementation is unop-
timized, but still achieves a processing time of maximum
5 ms for detection and an additional 2 ms for the position
estimation.

We used a dataset consisting of approximately 35 minutes
of driving mainly on highways. The first half of the dataset
is recorded on German highways during the summer. The
environment is mostly country side during a sunny day. The
second half is recorded in Sweden with mixed seasons with
ten minutes driving at night in city environments. The results
reported here are obtained using a MATLAB implementation.

A. Vehicle detection

The ability to detect an overtaking vehicle is evaluated by
inspecting the ratio of features moving forward during the
actual overtake. During normal driving, with no overtaking
vehicle, the ratio of features moving forward is on average
5%. An example of an overtake situation can be seen in
Figure 6 with corresponding ratio of features moving forward
in Figure 7.

As the vehicle enters the image, at approximately
frame 18, the ratio of features moving forward increases
radically. As the ratio goes above 50%, we declare it as a
detection. Note that this graph includes all tracked features.
As mentioned previously, in order to reduce the effect of
features moving in the background, we start by evaluating
the ratio with a set consisting of the bottom 25% of the lines
first and increase the set with one line until a detection is met
or all lines are included. Because of this, we get a detection
sooner, already at frame 19.

Table II presents the detection rate in a dataset consisting
of 35 minutes of randomly selected video sequences with
overtaking situations.

Lane True overtakes Detected Missed False det.

Adjacent 32 32 (100%) 0 5
Further away 18 11 (61.1%) 7 0

TABLE II: Detection performance in test dataset. The adja-
cent lane is the lane directly left of the ego-vehicles. The
further away lines are two or more lanes left of the ego-
vehicles.

The detection rate is high and all overtakes in the adjacent
lane are detected. As a vehicle is moving along the detection
lines, there are almost always plenty of features that are
successfully tracked, which increases the trust in the system.
Darker cars, in particular black, give fewer detected features
due to less defined edges, but yet delivers enough to get a
detection. The missed vehicles are all driving in the second
adjacent lane, and are thus only partly driving within the set
of detection lines. This is not a large problem since a proper
overtake is considered to be in the adjacent lane.

The false detections in the adjacent lane primarily result
from of two different cases. The first kind of issue arises
during bumpy rides. If the view of the camera shakes
significantly, the assumption of moving strictly forward on

Fig. 6: Example of overtake sequence. As the car moves
further into the detection lines, more and more features are
detected and tracked. The detection is made already in the
first frame because of many tracked features on the wheels.
The last detection is made on the third image.
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Fig. 7: The ratio of feature points estimated moving forward
during an overtake. The ratio increases radically when the
overtaking car enters the image. At frame 60, the overtaking
car completely covers the detection lines from start to end.

a plane breaks. Due to this, the feature tracking will not be
valid and can give a large amount of badly tracked features.
It would be straightforward to combine our approach with
a dynamic image stabilization functionality to reduce this
problem.

The second kind of issue is due to the repetitive patterns
arising from the poles between the highway lanes, which
is discussed in Section IV-C. This is most noticeable when
driving in the lane closest to the poles, where the repetitive
pattern is harder to detect. The poles are often on the
bottom lines, which will have large impact in our approach
of determining detection, since we start with a detection
group consisting of the last lines. Our counter-measures using
multiple starting points works well when driving second lane
from the poles, as there are zero false detections.

B. Position estimation

For the position estimation, there was no ground truth data
available, and therefore no proper statistics evaluation has
been made. However, as an indication of how the position
estimation may work, let us consider a typical overtaking
sequence. Figure 8 shows the unfiltered estimated relative



world coordinates for the overtaking vehicle, while Figure 9
shows the unfiltered estimated horizontal image coordinate of
the back-right corner during the sequence (see also Figure 10
for a one-frame example). As can be seen, the estimated
vehicle position seems reasonable and gives accurate image
coordinates for the corner of the vehicle, especially conside-
ring that the exact location of the corner may be somewhat
ambiguous for many cars.
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Fig. 8: The estimated world coordinates over the frames.
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Fig. 9: The estimated horizontal image position of the back-
right corner of the vehicle, compared to hand-labelled ground
truth.

VII. CONCLUSIONS AND FUTURE WORK

The developed system shows robust performance with a
low false positive rate. The 1D feature detector produces
many features suitable for tracking. The estimated movement
of the feature points provides a simple way of detecting
overtaking vehicles. The size of the estimated movements
for all features can be used to model the corner position of
the overtaking vehicle relative to the ego-vehicle.

A potential performance increase is to implement image
stabilization to reduce effects due to shakiness. The position

Fig. 10: A single frame example of the estimated horizontal
image position of the back-right corner of the vehicle,
represented by the closest right edge of the blue cuboid,
compared to hand-labelled ground truth, represented by the
green line.

estimation could benefit from using a more advanced model,
perhaps with a particle filter, estimating probabilities for
each possible position. In the future, the performance of
the position estimation should be further evaluated against
ground truth data.
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