REAL-TIME VIDEO BASED LIGHTING USING GPU RAYTRACING
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ABSTRACT

The recent introduction of HDR video cameras has enabled
the development of image based lighting techniques for ren-
dering virtual objects illuminated with temporally varying
real world illumination. A key challenge in this context is
that rendering realistic objects illuminated with video envi-
ronment maps is computationally demanding.

In this work, we present a GPU based rendering system
based on the NVIDIA OptiX [1] framework, enabling real
time raytracing of scenes illuminated with video environment
maps. For this purpose, we explore and compare several
Monte Carlo sampling approaches, including bidirectional
importance sampling, multiple importance sampling and se-
quential Monte Carlo samplers. While previous work have
focused on synthetic data and overly simple environment
maps sequences, we have collected a set of real world dy-
namic environment map sequences using a state-of-art HDR
video camera for evaluation and comparisons.

Index Terms— Image Based Lighting, HDR Video,
Video Based Lighting

1. INTRODUCTION

Image based lighting (IBL) [2] enables photo-realistic ren-
dering and seamless integration of virtual objects into pho-
tographs and videos captured in real scenes. This is carried
out by driving the lighting simulation during rendering us-
ing illumination captured in the real scene, using carefully
calibrated High Dynamic Range (HDR) images. Traditional
approaches capture a single panoramic image to represent
the incident illumination in the scene [2, 3]. While a sin-
gle panoramic image works well for still images, seamless
integration of rendered objects into video footage requires
capturing the temporal variations in the illumination. This
requirement has entailed the development of IBL methods
using panoramic HDR video to capture the scene illumina-
tion as a sequence of environment maps [4, 5].
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However, realtime rendering with such video based light-
ing techniques has previously been limited to diffuse mate-
rials and low-frequency illumination [4, 6]. In this work, we
show how realtime raytracing in the OptiX [1] framework
can be used to render glossy materials in high-frequency
video environment maps. To this end, we explore both ap-
proaches sampling each frame separately [15, 18] and that
exploit the correlation among frames using sequential Monte
Carlo (SMC) samplers [7].

We focus the comparison on realtime HDR video se-
quences captured using a state-of-the art HDR video camera.
These sequences pose several challenges as that they reflect
a much wider range of possible temporal variation than pre-
viously considered. The main contributions of this work
are

e A GPU based solution for realtime raytracing using video
environment map illumination.

e Evaluation and comparison of Monte Carlo estimators for
rendering with video environment map illumination.

2. CAPTURING HDR VIDEO PANORMAS

To represent the incident illumination, we capture light probe
images for each frame by utilizing a standard non-central
catadioptric imaging system based on a near orthographic lens
and a mirror ball, depicted in Figure 2. To efficiently match
the captured incident illumination to a synchronized back-
plate sequence, we use a consumer video camera mounted
on top of the HDR camera capturing the light probe. This
arrangement allows for high-resolution background footage,
but incurs a small error if considerable spatial variations in
the incident illumination is present.

To accurately capture the full dynamic range of the inci-
dent illumination varying over time in a video light probe, we
relay on recently developed HDR video technology [8]. At
present, there exist a multitude of different methods for cap-
turing HDR video. Many of these are of limited use for a ver-
satile IBL pipeline, as they often still can not accurately cap-
ture the complete dynamic range of an outdoor environment
containing direct sunlight and deep shadows. Instead, many
commercially available HDR video cameras are in practice
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Fig. 1. The video light probe is captured using a multi-sensor
HDR video camera synchronized to a high resolution back-
plate video camera.

limited to 15-17 f-stop. Arguably, the currently best HDR
video camera systems for temporal IBL in terms of resolu-
tion, noise characteristics, and overall image quality are based
on setups with multiple, synchronized sensors that simulta-
neously capture different exposures of the scene. For this
work, we use a state-of-the-art multi-sensor HDR video cam-
era [9, 10] developed by Linkoping University and Spheron
VR, capable of capturing a dynamic range of 24 f-stops.

Before further processing, the light probe images are sta-
bilized, removing vibrations in the light probe relative to the
camera, so that the camera lens is in the center of the light
probe images. The light probes are then converted into a lat-
itude longitude mapping, color corrected to match the back-
ground footage and blurred slightly in the hidden directions
directly behind the light probe, for details of this process see
section 7.4.1in [11].

3. RENDERING

The reflected radiance L, (x, w,, t) leaving a point x on a sur-
face in direction w, at frame ¢ is given by

L, (x,w,,t) = / Li(x, w)p(x, we, w)V (x,w)(w - n)dw,
Q
ey

where  denotes the visible hemisphere, L;(x,w) is the in-
cident radiance arriving at the point x from direction w for
frame ¢. Here, p(x, w,,w) is the bidirectional reflectance dis-
tribution function (BRDF), V (x, w) is a binary visibility func-
tion and n denotes the surface normal.

In this work, we are concerned with the case when
Li(x,w) is represented by a HDR environment map de-
scribing the incident radiance onto the objects in the scene.
To render an animation we use a separate environment
map representing the incident illumination at each frame,
Li(x,w), La(x,w), .... To render the scene, we need to eval-
uate the reflected radiance given by (1) for a large number of
sampled scene points for each frame.

The integral in (1) is often evaluated using Monte Carlo
importance sampling. For the static case, treating each frame

separately, several different importance functions have been
investigated in previous work. Approaches sampling propor-
tional to the BRDF [12] performs better for glossy materials
in low-frequency environments. When the environment maps
contains high-frequency content, environment sampling ap-
proaches [13, 14] performs better. In scenes with possibly
both glossy BRDFs and high frequency environment maps,
approaches sampling proportional to the product [15] is nec-
essary for efficient rendering.

Relighting applications using video environment maps
also enables utilizing the correlation among frames. Havran
et al. [4] considered temporal filtering of the samples pro-
posed from the environment maps in each frame, however this
approach can lead to overly smooth results. Other approaches
have focused on off-line rendering when the complete se-
quence of environment maps are available by stratifying
samples from the environment map sequence in both the spa-
tial and temporal domain [16, 17]. Ghosh et al. [7] proposed
to propagate a carefully tuned approximation of the product
between the BRDF and the environment map between frames
using SMC sampling. Using a CPU rendered they were able
to show reduced variance compared to other approaches in
equal computational time.

In this work, we focus on approaches that enables render-
ing general material appearance under a range of different il-
lumination conditions, including low frequency and high fre-
quency in the same video environment map sequence. For this
purpose we have chosen to investigate further three represen-
tative approaches. The simplest and most widespread is mul-
tiple importance sampling (MIS) [18], efficiently combining
samples proposed from the BRDF and the environment map
in each frame. The second, bidirectional importance sampling
is a product sampling approach [15], proposing samples from
the product of the BRDF and the environment map. Finally
we also compare these approaches which treat each frame
separately to the approach by Ghosh et al. [7] which exploits
the correlation among frames using Sequential Monte Carlo
samplers.

4. MULTIPLE IMPORTANCE SAMPLING

To estimate the reflected radiance, MIS samples both the en-
vironment map and the BDRF. These samples are weighted
such that large variance spikes due to mismatch between one
of the proposals and the shape of the integrand. The result
is a very robust method that can handle both glossy materials
and high frequency illumination. Drawing IV, samples from
the BRDF and Ny, samples from the environment map, the
MIS estimator of the reflected radiance (1) using the balance



heuristic [18] is given by
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where ¢,(w") is the importance function used to draw sam-
ples proportional to the BRDF and ¢, (w?) is the importance
function used to draw samples from the environment map.

5. BIDIRECTIONAL IMPORTANCE SAMPLING

In some cases, one factor of the integrand is more expensive
to compute than the other. For this end, Burke er al. [15]
proposed to draw samples from a target distribution given as
the product of the other factors using sampling importance
resampling. In general the most costly factor to evaluate is
the visibility factor, thus the target distribution is given by

w)py (X, wo,w)(w - n)
w)py (X, Wo,w)(w - n)dw’

At (w) _ Ly, (x,
Z fQ Lyﬂg (X,
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where Ly (x,w) and py (%, w,,w) are the luminance of the
color valued L;(x,w) and p(x, w,,w), respectively, 4 (w) =
Ly +(x,w)py (X, w,,w)(w - n) is the unnormalized target and
Z = [ Ly(x,w)py (X, wo,w)(w - n)dw is a normalization
constant corresponding to the un-occluded reflected radiance.
By first sampling from a distribution, ¢(w), for example pro-
portional to the BRDF, these samples can then be weighted
and resampled to obtain a new set of samples approximating
the target distribution. This is done by the empirical approx-
imation 7 (w) = va 1 N(S i(w). Using this approximated
target distribution, the reﬂected illumination can be estimated
using

p(x, wo, wHV (wih)
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6. SMC SAMPLERS

Instead of approximating the target distribution for ¢ =
1,2, ... independently we can use SMC samplers to exploit
the correlation of the target distribution between frames. This
is motivated by the fact that for real-time HDR video envi-
ronment maps the incident illumination often varies relatively
slowly, i.e. Lt(x,w) &~ Li_1(x,w).

Sequential Monte Carlo [19] is a family of methods for
sampling from a set of target distributions of growing dimen-
sion. For the sequence of target distributions we are inter-
ested in here (3) the dimension is constant and therefore stan-
dard SMC methods cannot be applied directly. However, it

is possible to reformulate the problem by introducing artifi-
cial target distributions defined on a space of increasing di-
mension. By this construction, the desired target distribution
can be found by marginalizing over the auxiliary dimensions,
see [20]. To approximate the target distribution (3) the re-
sulting SMC sampling algorithm is carried out in two steps, a
propagation step and an adaption step.

6.1. Propagation step

Assume that there exists a set of N weighted samples de-
noted {wi ,,wi ;}N,. At frame ¢ — 1 this set approxi-
mates the target by the empirical approximation 7;(w) =

— denote the

N
Zi:l i=1 Wi—1

normalized weights. For the first frame, such an approxima-
tion can be sampled using any product sampling approach.
In this work, we use the bidirectional importance sampling
proposed discussed in Section 5.

To approximate the target at ¢, the samples at ¢ — 1 are first
propagated forward using sequential importance sampling by
simply reweighing the existing samples. With an appropriate
choice of artificial target distributions, for details see [20], the
new unnormalized weights simplify to

i
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To limit the degeneracy of the approximation over time, i.e.
only a few samples receiving significant weights, resampling
is performed when the effective sample size (ESS) defined
by SN (Wi*)~1 is below a pre-specified threshold. In this
work, we use %N as this threshold. The resampling step
draws new samples w; with replacement from the weighted
sample set with a probability proportional to the weights. The
new sample set is composed of the N resampled samples with
i — 1

equal weights, i.e. w; = +.

6.2. Adaption step

To improve the approximation of the target distribution at
frame ¢, the samples {w}, wi} X | are further adapted using an
Markov Chain Monte Carlo (MCMC) kernel K;(w,w’) with
the desired target as the invariant distribution. The MCMC
kernel is constructed using the Metropolis-Hastings (MH) al-
gorithm. Using MH, the MCMC kernel is described by the
acceptance probability

¥t (w ) (wt — wi')

a(w — w') = min <1 Jelwr) alwr’ = wi)), (6)

where wf is the current sample, w,ﬁj is the proposed sample
using the proposal distribution ¢(-) and a(-) denotes the ac-

ceptance probability of the transition.



We follow [7] and design a proposal distribution using a
mixture of local moves with some probability v and and inde-
pendent moves with probability 1 — v. This is done to prevent
the samples from getting stuck in local narrow modes. The
local moves are represented by a uniform random perturba-
tions of the current samples by a few degrees. The indepen-
dent moves are represented by drawing new samples from the
environment map or the BRDF.

6.3. Reflected illumination estimate

Given the weighted sample set obtained by from the two steps
in the SMC algorithm, we can estimate the reflected surface
radiance (1) as

R L i i
LT(X,WO, Zt ZWI t X wt (X w07wt)V(wt)
Lys(x,0}) py (%, wo, )

. ()

One advantage of the SMC rendering algorithm is that the
normalization constant Z; can be incrementally estimated by
using the relation

N
Zy~ Zi_q Zw;’. (8)
=1

For details on the derivation of this expression see [7]. Z;
can be estimated from the samples obtained via bidirectional
importance sampling in the first frame.

The SMC algorithm presented here works well under the
assumption that y;(w) & ~y;—1(w). If the discrepancy be-
tween two successive target distributions is large, this results
in a high variance in the sample weights. This as the weights
are computed before applying the MCMC kernel, which can
correct the discrepancy to some amount. The variance in the
particle weights can be reduced using resampling. This re-
sults in a good approximation of the unnormalized target dis-
tribution 4;(w). However, as the resampling operation does
not affect the computation of the normalization constant Z;,
this estimate is likely to be poor when the target distribu-
tion changes rapidly. This is typically the case for real HDR
video environment maps. To smooth the transition one can
use a set of intermediate distributions [7] to guide the sam-
ples smoothly between the targets. As recommended in [7]
we use one MCMC move for each intermediate distribution
to adapt the samples gradually.

A big drawback of the original SMC rendering algorithm
from [7] is that as time progresses, the variance of the esti-
mated normalizing constant tends to increase. This can lead
to visually disturbing artifacts. To counter this, we propose a
simple but effective approach where we monitor the change
in ZZjl and when a large increase occurs we reinitialize the
particle buffer and normalizing constant estimate using bidi-
rectional importance sampling.

Frame 502

Fig. 2. Real-time rendered helicopter model (25 fps using
SMC) composited into the backplate video sequence

7. IMPLEMENTATION

To enable real-time raytracing with video environment maps
we have implemented the three rendering algorithms de-
scribed above in the CUDA based OptiX framework of
NVIDIA [1], running on the GPU. We use a regular sam-
pling of the image plane to spawn a set of rays into the scene.
Our implementation currently only considers direct illumina-
tion, however it’s trivial to extend it to path tracing as well,
by spawning a new ray from the shading point. To handle
several samples per pixel we utilize two OptiX kernels. The
first kernel spawns R rays per pixel and updates the asso-
ciated sample buffer. The second kernel filters the reflected
radiance of the sampled ray locations using an reconstruction
filter and tonemaps the image for display. In the examples
presented here, we used a box filter for reconstruction and a
gamma mapping for tonemapping.

To sample from the environment map we use the numeri-
cal inversion method presented in []. The environment maps
at frame ¢ and ¢ — 1 are accessed through two texture sam-
plers, enabling efficient lookups using the texture hardware
on the GPU. To draw samples from the environment map we
precompute tabulated column and row CDF on the CPU and
upload this to a read-only global GPU buffer before rendering
the frame.

For the SMC rendering algorithm we for each queried
shading point we read, compute and store the sampled direc-
tions and weights {w}, wi}Y | in a 3D floating point buffer
residing in global GPU memory indexed using the ray origin.

8. RESULTS AND COMPARISIONS

To evaluate the performance of our method we used a
NVIDIA geforce GTX [[XXX describe results... ]]
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