
Community Detection in
Imperfect Networks

Johan Dahlin

Information Systems, Swedish Defence Research Agency.
Department of Physics, Ume̊a University.

June 3, 2011

Community Detection in Imperfect Networks
Master’s thesis, Master of Science in Engineering Physics, Ume̊a University.
Johan Dahlin, johan.dahlin@foi.se or joda0009@student.umu.se.

This thesis is part of the project Tools for information management and analysis, which
is funded by the R&D programme of the Swedish Armed Forces.

Supervisor: Pontus Svenson, Swedish Defence Research Agency.
Examiner: Sang Hoon Lee, Department of Physics, Ume̊a University.

Presented: Ume̊a University, May 30, 2011.
Approved for print: June 3, 2011.

ii

Abstract

Community detection in networks is an important area of current research with many
applications. Finding community structures is a challenging task and despite significant
effort no satisfactory method has been found. Different methods find different communi-
ties in the same network and with different computational requirements. To counter this
problem, several different methods are often used and the results compared manually. In
this thesis, we present three different methods to instead merge the results from differ-
ent methods (or several runs from the same algorithm) to find better estimates of the
community structure.

Another problem in practical applications is noisy and imperfect networks with miss-
ing and false edges. These imperfections are natural results from the methods used to
map the network structure and are often difficult to eliminate. In this thesis, we apply a
Monte Carlo-sampling method in combination with the introduced methods for merging
community detection results to find community structures in such networks. The method
is tested by simulation studies on both real-world networks and synthetic networks with
generated uncertainties and imperfections. We finally demonstrate how it is possible to
generate confidence levels of the obtained community structure from the merging meth-
ods. This allows for a qualitative comparison of the robustness and significance of the
network clustering.

Keywords: social network analysis, imperfect networks, uncertain edges, community de-
tection, ensemble clustering.

Sammanfattning

Identifikation av grupperingar i nätverk är ett viktigt omr̊ade inom aktuell forskning med
många olika tillämpningsomr̊aden. Att finna grupperingar är ofta sv̊art och trots bety-
dande ansträngningar har ingen tillfredsställande metod hittats. Olika metoder finner
ofta olika grupperingar i samma nätverk och kräver varierande beräkningskraft. För att
hantera dessa problem används ofta flera metoder vartefter resultaten jämförs manuellt.
I detta examensarbete presenterar vi tre olika metoder att istället sl̊a samman resultat
fr̊an olika metoder (eller fler körningar fr̊an samma algoritm) för att hitta bättre uppskat-
tningar av grupperingarna.

Ett annat problem i praktiska tillämpningar är brus och ofullständiga nätverk med
saknade och falska kanter. Dessa brister är naturliga resultat fr̊an de metoder som används
för att kartlägga nätverketstrukturen och det är ofta sv̊ara att eliminera dessa. I detta
examensarbete använder vi Monte Carlo-metoder i kombination med de introducerade
metoderna för att sl̊a samman funna grupperingar för att hitta grupperingar i det osäkra
nätverket. Vi testar metoden genom simuleringstudier p̊a b̊ade verkliga och syntetiska
nätverk med genererade osäkerheter och brister. Slutligen demostrerar vi hur det är
möjligt att skapa konfidensniv̊aer för noder i grupperingar med hjälp av metoderna för
sammanslagning. Detta möjliggör en kvalitativ jämförelse av stabilitet och signifikans av
identifierade nätverksgrupperingar.

Nyckelord: social nätverksanalys, ofullständiga nätverk, osäkra kanter, grupperingar, en-
sembleklustering.

iii

iv

Preface

This is my Master’s thesis for the degree of Master of Science in Engineering
Physics at Ume̊a University. The thesis has been written at the Department
of Informatics, Swedish Defence Research Agency (FOI) during the spring
of 2011.

This thesis was not written in a vacuum and I owe much gratitude to
many people that have supported and aided my work. I would especially like
to thank my supervisor Pontus Svenson for his guidance and support during
the entire Master’s thesis. The thesis work would not have progressed as
good as it has without our creative discussions and his enthusiasm. Fur-
thermore, I would like to thank my supervisor Sang Hoon Lee for all helpful
comments, suggestions, and discussions during the project.

I thank the participants of the NORDITA-conference on Applications of
network theory: from mechanisms to large-scale structure for the possibility
of presenting my findings before world-class network scientists. The helpful
comments and suggestions from the presentation greatly improved my thesis.

I am grateful for the support, interest, and encouragement from all the
people at the Department of Informatics at FOI. Without you, my Mas-
ter’s thesis work would have been dreading and monotonous. At last, I owe
much to my wonderful family and friends without their loving support and
encouragement my life would not be the same.

Johan Dahlin,
Kista, Stockholm,
June 3, 2011.

v

vi

Contents

1 Introduction 1

2 Clustering analysis and community detection 5

2.1 Data clustering . 5

2.2 Ensemble clustering . 9

2.3 Community detection . 11

2.4 Algorithmic community detection 15

3 Uncertain and imperfect networks 23

3.1 Observation model . 24

3.2 Generalizing the observation model 26

3.3 Probability theory . 27

3.4 Dempster-Shafer theory . 28

3.5 Fuzzy-Set theory . 32

4 Detecting communities in imperfect networks 35

4.1 Sampling candidate networks 35

4.2 Detecting candidate communities 38

4.3 Merging candidate communities 39

4.4 Confidence level of communities 45

5 Simulation experiments 47

5.1 Test networks . 47

5.2 Generating uncertain networks 52

5.3 Generating imperfect networks 53

5.4 Evaluating community structures 54

6 Results and discussion 59

6.1 Improving community detection by merging 60

6.2 Simple method for uncertain networks 63

6.3 General method for uncertain networks 64

6.4 General method for imperfect networks 72

6.5 Unsupervised evaluation and confidence levels 75

vii

7 Concluding Remarks 81

A Graph theory 89
A.1 Elementary graph theory . 89
A.2 Algebraic graph theory . 90
A.3 Spectral graph partitioning 91
A.4 Common problems related to graphs 92

B Social Network Analysis 95
B.1 Closeness centrality . 96
B.2 Betweenness centrality . 97
B.3 Eigenvector centrality . 97

C Notation 98

D Abbervations 99

viii

Chapter 1

Introduction

Networks are everywhere in nature and models of them are useful in describ-
ing and analyzing many different kinds of relationships and interdependen-
cies. Studies of these networks and their structures have recently been the
focus of much research. Much effort has been given to study the problem of
finding so called community structures in networks. A community is a group
of nodes that are more densely connected to each other than to other nodes
outside the group. Community structures are a distinct feature of some real-
world networks that are rarely found in fully random networks. Community
detection is useful in many important applications ranging from grouping
metabolic and protein-interaction networks to identifying persons with sim-
ilar shopping patterns and structural studies of the Internet. [1, 2, 3, 4, 5, 6]

Motivation In practical applications network data is often gathered by
empirical methods and therefore some uncertainty is included. It is often
the case that the full network with all nodes and edges is not known with
certainty, as the network is not often fully observable directly. Note that
problems with falsely included edges and nodes are equally important. An
example of this is the use of communication data and observed behavior in
constructing friendship networks in groups of people. Empirically gathered
data is also filled with uncertainties and conflicting information, which occur
as the result of e.g. measurement errors, or from un-truthful participants in
surveys and interviews.

Earlier work in community detection has been concerned only with cer-
tain networks. Uncertain information has traditionally been treated by ei-
ther removing or including all uncertain edges and nodes in the network.
This has consequences as the uncertain information is completely removed
or wrongly included. We therefore propose new methods to analyze com-
munity structures in networks containing uncertain and incomplete network
information. A framework is introduced to merge evidence from multiple
sources to find probabilities for the existence of nodes, edges and higher-
order networks structure. Furthermore, methods to analyze the community

1

structure of these uncertain and imperfect networks are proposed. This en-
able full use of the uncertain information which should yield better estimates
of the community structure than the two traditional solutions.

Background Social Network Analysis (SNA) is used to identify social
roles, important groups, and hidden organization structures from gathered
social data. SNA originated in the social sciences during the first part of
the 20th century, when sociologist investigated human social behavior by
observing groups and individuals. SNA can be said to have been founded
in the 1930’s when Moreno first used the sociogram, thus founding the field
of sociometry. The methods later spread into other social sciences, like an-
thropology and psychology, but remained unknown to the natural sciences.
[1]

An interesting and important problem in SNA is to identify groups and
communities, i.e. modules in or groups of the network. The first applications
of community detection was to analyze the community structure of work-
groups in the U.S. government [7] and in voting patterns [8]. These com-
munities were detected using manual methods, often with graphical means.
The first use of mathematics and graph theory for analyzing social network
was performed in a block-diagonal form or sociomatrix. Using statistical
methods, known as clustering analysis, these matrices are traditionally used
as similarity measures between nodes in the network. [3]

In 2002, physicists were introduced to community detection by Refs.
[9, 10] that discussed some problems faced by network analysis and how
methods from physics could help solve them. This sparked a large interest in
analyzing social networks using sophisticated tools from the natural sciences.
The increasing interest in SNA was also due to the emergence of social
community websites, web-crawlers, and sequencing of DNA, which produced
an unprecedented large amount of network data for scientists to analyze.
Much effort was given to the analysis of the structure of social networks.
[1, 3]

Previous and related work This thesis builds on and refines work in
community detection in (weighted) networks and ensemble clustering meth-
ods from data clustering problems. Much of the background and previous
work concerning these methods are introduced in Chapter 2 of this thesis.
Therefore, we only discuss these topics in brief in this introduction. Com-
munity detection has been an important research area in network analysis
for some time, as mentioned earlier the first methods were manual without
computers.

In recent years a large number of methods for detecting community struc-
tures have been developed, drawing on knowledge from many different fields,
e.g. statistical mechanics, discrete mathematics, computer science, statistics,
and sociology. These methods have also been improved to handle weighted,
directed, and multi graphs. To our knowledge, no previous work has been
performed with uncertain graphs but some published works study the effects

2

Figure 1.1: The proposed steps to detect community structures in imperfect net-
works. (i) sampling from the ensemble of consistent networks and find the commu-
nity structure in each candidate network. (ii) merging the candidate communities
using Fusion of Communities. (iii) evalutation and presentation of the obtained
community structure.

of missing links and robustness of clustering. A thorough review of the cur-
rent state in community detection is given in Ref. [3] and more background
is given in Chapter 2.

Ensemble clustering is a technique used in e.g. bioinformational applica-
tions and was created to merge several clustering results into one. To our
knowledge, no work has been devoted to applying these methods to commu-
nity detection problems. However other methods have been used to merge
several community structures, e.g. voting in Refs. [11, 12]. As data clustering
and community detection are quite similar, it should be possible to merge
communities in the same manner as ensembles of data with good results.
Ensemble clustering methods were first introduced in Ref. [13] and further
develop by e.g. Refs. [14, 15]. See Chapter 2 for additional information about
ensemble clustering methods.

Contribution and method In this thesis, we propose new methods
for community detection in imperfect networks. This is accomplished using
a three step procedure outlined in Figure 1.1 with sampling, community
detection, and merging. We present novel methods to sample from the
ensemble of consistent networks, three different methods for merging several
candidate community structures and for validating the merged results.

To validate the methods introduced in this thesis, we test the three
merging methods on generated synthetic imperfect networks and scrambled
real-world networks. These synthetic networks are designed to investigate
the robustness of the methods related to the amount of uncertainty and
the presence of missing/false edges. The resulting community structure is
compared with the solution given by external information and the structure
found by the same community detection method applied on the original
network without uncertainty.

3

Results The main results include a demonstration that merging can
be used to increase the effectiveness of fast stochastic community detection
methods. One method, using label propagation [11], is shown to perform
as well as the more advanced spin glass [16] method and this at a lower
complexity. We also demonstrate how this merging method in combination
with sampling to analyze uncertain networks. Most of the community struc-
ture is recovered in networks where only half of the edges are known with
certainty.

Finally, we apply the same methods to imperfect networks, where edges
have been randomly added and removed to simulate false/missing edges.
The methods perform reasonably well at low level of noise but the commu-
nity structure is lost in sparse networks even when adding only a few false
edges. Therefore, this method is only applicable in denser networks where
much network information is available.

The Label Propagation (LP) community detection method used in com-
bination with NFC is the recommended method for detecting communities
in imperfect network. This method generates good (or the best) results in
the simulation studies conducted to evaluate the accuracy and performance
of the proposed combinations of methods.

Disposition The outline of this thesis is as follows: Chapter 2 presents
and discusses previous work in cluster analysis, ensemble clustering, and
community detection. Chapter 3 provides a review some basic methods in
uncertainty theory and propose a framework to combine evidence to form
an imperfect network. Chapter 4 combines the material in the two previous
chapters into methods for analyzing uncertain/imperfect networks.

Chapters 5 and 6 discuss the design, implementation and results of the
conducted simulation experiments. The thesis is concluded with Chapter 7
containing a summary and some remarks. Appendices A and B contain ele-
mentary graph theory, spectral graph partitioning and centrality measures.

4

Chapter 2

Clustering analysis and
community detection

Detecting communities in networks is comparable to partitioning sets of data
into similar clusters. The main difference is that data clustering allows for
grouping any pair of data points together, whereas community detection only
allows for directly1 grouping linked nodes together. We therefore begin this
chapter by reviewing data clustering methods and discussing some methods
for validation of clustering results. Ensemble clustering is introduced for
combining ensembles of data clusterings; this method is later generalized in
Chapter 4 for community detection methods.

We continue by reviewing the generalized versions of data clustering
methods for clustering nodes in networks. These techniques are generally
referred to as community detection methods and are both similar and dif-
ferent compared to data clustering methods. We discuss the definition of a
community as well as how to detect them manually as well as using computer
algorithms. Common problems regarding community detection in networks
are uniqueness, existence, and validation of the communities. These prob-
lems are discussed in this chapter, as they have implications for detection
of community structures in uncertain and imperfect networks.

2.1 Data clustering

Cluster analysis is the umbrella term for statistical methods to divide a set
of observed random data into subsets (clusters) without any external infor-
mation. Clustering is therefore an unsupervised method different from clas-
sification methods that uses external information to train classifiers which
group the data. Clustering has important applications in many different

1They can be grouped in the same communities even if they are not directly connected
but indirectly through a number of short paths.

5

fields including biology, computer science, and the social sciences, to cre-
ate some understanding of a data material by grouping data together into
(perhaps) easily identifiable clusters. Another purpose of clustering is to
simplify or reduce the data material before using other statistical tools, e.g.
principal component analysis or classification. [17]

The main problem in data clustering is dividing a set of data, x =
{x1,x2, . . . ,xn}, into exactly k disjoint subsets, x = {x(1),x(2), . . . ,x(k)}, in
which all elements in some sense are similiar to each other. This problem
is typically solved by using one of many possible combinations of cluster-
ing algorithms and similarity measures. Two different types of clustering
algorithms are commonly used in practice: hierarchical clustering and par-
titional clustering. Three common families of similarity measures used to
quantify the similarity between data points are: (i) distance-based measures,
e.g. the usual norms (L1, L2, and supremum norms), (ii) distribution-based
measures, e.g. Kullbeck-Leibler divergence for probability distributions, and
(iii) density-based measures by finding peaks in the kernel density landscape.
[18, 19]

The different algorithms and similarity measures yield different results
and are used to cluster different kinds of data in different applications. The
advantages of using hierarchical compared with partitional clustering, are
the capability to find overlapping clusters and that it does not require the
number of clusters to be specified beforehand. The main drawback of hi-
erarchical clustering is that it has a higher computational complexity, thus
only allowing for smaller data sets to be clustered. [20, 17, 18].

Example 1 (Clustering random data). In Figure 2.1, the result of cluster-
ing random data is presented using k-means and agglomerative hierarchical
clustering. The left-hand part of the figure shows the clustering as found by
the k-means algorithm with the ’+’ indicating the centroids. The dendro-
gram shows the result from the hierarchical clustering, which is identical to
the solution found by k-means.

2.1.1 Hierarchical clustering

The two most common hierarchical clustering methods are called agglom-
erative hierarchical clustering (merging data points from the bottom-up)
and divisive hierarchical clustering (splitting the full data set into subsets
top-down). The agglomerative version iteratively merges the most similar
data points (and clusters) until only one cluster containing all data points
remains, shown in Algorithm 1. Finding the similarity between the merged
data points (clusters) require some linkage rule which is determined by the
similarity measure used. The three most common rules are the single, com-
plete, and mean linkage. The single (complete) linkage is equal to the max-
imum (minimum) similarity between two points in different clusters. The

6

Figure 2.1: The clustering of random data by k-means and agglomerative hierar-
chical clustering using Ward’s method. The random data is comprised of 10 sam-
pled random variables from each of the following distributions: N (0, 1), N (−3, 1),
N (3, 1). The colored boxes in the right part of the figure indicate the three clusters
found by the hierarchical clustering algorithm.

Algorithm 1 Agglomerative hierarchical clustering
Given a similarity matrix.

(i) merge the two most similar clusters,

(ii) update the similarity matrix to include the similarity between the new cluster
and the existing clusters,

(iii) repeat (i)-(ii) until only one cluster remains.

mean linkage rule equals the mean similarity between all pairs of data points
in different clusters. It is well-known that the choice of linkage method as
well as similarity measure greatly influences the result of the clustering.
Other problems with hierarchical clustering is that the method is sensitive
to outliers and the high computational complexity, O(n2), where n denotes
the number of data points. [18, 21]

2.1.2 Partitional clustering

The most commonly used partitional clustering algorithm is k-means clus-
tering. This algorithm does not merge individual points into clusters but
splits the data sets into k clusters simultaneously. This is done by assigning
each data point to the most similar centroid, which is calculated using the
mean of the cluster of which it is the center. This method is iterative and
outlined in Algorithm 2.

The simplest possible centroid is found by first randomly placing k cen-
troids in the sample space and then using the sample average to update its
position. The choice of centroid calculations and similarity measures have
a large impact on the results, as the data points are placed into the cluster

7

Algorithm 2 k-means clustering
Given k arbitrary points as centroids.

(i) form clusters by assigning each point to the most similar centroid,

(ii) recompute the centroid for each cluster (the mean value of the points in the
corresponding cluster),

(iii) repeat until the centroids do not change position (or with some tolerance).

with the most similar centroid. As the k-means method does not require
recalculation of similarities it has a low complexity O(n), thus it is able to
cluster larger data sets than hierarchical clustering. The k-means method
is also sensitive to outliers and tends to place these in a cluster of leftover
data points. [22, 21]

2.1.3 Validation and evaluation

A difficult problem related to clustering is that without any external infor-
mation, it is very difficult to validate if the clustering is correct or not. This
situation is further complicated since it is not often known how many clus-
ters that exist in the data. The main questions as such are if the clustering
exists (or is a result of the method used) and the quality of the clustering
(if a clustering is assumed to exist).

To solve some of these problems two different classes of methods have
been developed for cluster validation: unsupervised validation that evaluates
clusterings without any additional information; and supervised validation
which uses external information (labels) to evaluate clusterings.[20]

Some unsupervised methods are the two measures2, cohesion, coh, and
separation, sep, of a proposed clustering solution is defined using some sim-
ilarity function, sim(·)

coh =
∑
y∈x(i),
z∈x(i)

sim(y, z), sep =
∑
y∈x(i),
z∈x(j)

sim(y, z) with i 6= j, (2.1)

where x(i) is set of data points that constitutes cluster i. The separation
is the total similarity between two clusters and the cohesion is the total
similarity of elements within a cluster. These measure are used to compare
two different solutions, typically a good solution has high separation and

2It is possible to show that the measures are equivalent to the SSE, Sum of Squared
Errors, when the Euclidean distance is used as the similarity measure, sim(x, y) = x −
y. This measure is later used as the Mean Square Error (MSE) when comparing two
community structures. [18]

8

cohesion. This would indicate dense clusters that are well separated from
each other. [18]

A supervised validation method is the correlation between the frequency
matrix and the proposed solution. We use labels to construct an ideal fre-
quency matrix, F∗ = [F ∗ij], where Fij = 1 if points i and j are in the same
cluster and Fij = 0 otherwise. The correlation is calculated between the rows
of the ideal frequency matrix and the matrix constructed by the obtained
solution. High correlation indicates similiar clustering solutions. [20]

2.2 Ensemble clustering

Recently, advances have been made in improving the performance of clus-
tering using ensemble clustering. The ensemble clustering problem is con-
cerned with how to combine a given ensemble3 of clusterings to produce
a solution which is a mean of the ensemble. Two solutions to the problem
are introduced in Ref. [13]: Instance-based Ensemble Clustering (IBEC) and
Cluster-based Ensemble Clustering (CBEC). [15, 24]

2.2.1 Instance-Based Ensemble Clustering

The first ensemble clustering method uses the frequency of with which two
point, i and j are placed in the same cluster as a similarity measure. This
similarity is used in a hierarchical clustering method to cluster similar nodes
together, i.e. nodes that are often found in the same cluster. [14, 15]

Definition 1 (IBEC). Given an ensemble of clusters, x = {x(1), . . . ,x(r)},
IBEC constructs a fully connected (complete) graph, G = (V,F), where V
is a set of n nodes and F = [Fij] is a frequency matrix with Fij as the
frequency of instances that nodes i and j are placed in the same cluster.

Using this complete graph and the frequency matrix, the ensemble clus-
ter is found by using e.g. agglomerative hierarchical clustering (with the
frequency matrix as the similarity and one of the linkage methods described
above) or some graph partitioning method. [25, 26, 14, 15]

2.2.2 Cluster-Based Ensemble Clustering

The second ensemble clustering method combines clusters from different
ensembles that have a large overlap and are similar to each other. CBEC
constructs a graph where the nodes represent generated candidate clusters,
which are merged into meta-clusters. [15, 27, 28, 29]

3Which is often generated by re-sampling methods [23] or random projections [15].

9

Definition 2 (CBEC). Let x = {x(1), . . . ,x(R)}, be an ensemble of clusters
and write x = {x(11), . . . ,x(1K1), . . . ,x(R1), . . . ,x(RKR)}, where x(ij) repre-
sents cluster j formed during run i in the ensemble x. Denote the total
number of clusters in x by t =

∑
rKr, and construct a graph, G = (V,S),

where V is a set of t nodes, each representing a cluster. S = [Sij] is a
similarity matrix with Sij = sim(i, j) defined by some suitable measure.

Algorithm 3 CBEC

(i) construct a diagonal matrix, D = [Dij], where Dii =
∑

j Sij with Sij as the
similarity between nodes i and j, and all off-diagonal elements are zero,

(ii) find the normalized similarity matrix, L, by multiplying the similarity matrix,
S, with the inverted diagonal matrix, i.e. L = D−1S,

(iii) calculate the k largest eigenvectors of L and form a matrix, U = [Uij], where
Uij is the jth eigenvector for j = 1, 2, . . . , k,

(iv) normalize each row in the matrix eigenvector matrix,

Ūij =

[∑
i

Uij

]−1

Uij , (2.2)

(v) find the meta-clustering by using the k-means method on Ū = [Ūij] treating
the rows as low-dimensional representation of the network.

The similarity measure in this method is not the same as we used before
in the data clustering methods. This measure should instead quantify the
similarity between the elements of two sets. Many different measures exist
for determining the similarity between sets, e.g. the Jaccard measure (2.3),
the cosine measure (2.4), and the symmetric difference (2.5). These different
methods are represented in Figure 2.2 and are quite similar in appearance
but do have some different properties which make them suitable for different
applications. [15, 30, 31]

simjac(x
(i),x(j)) =

∣∣x(i) ∩ x(j)
∣∣∣∣x(i) ∪ x(j)
∣∣ . (2.3)

simcos(x
(i),x(j)) =

∣∣x(i) ∩ x(j)
∣∣√∣∣x(i)

∣∣ ∣∣x(j)
∣∣ . (2.4)

simsym(x(i),x(j)) =
∣∣∣x(i) ∪ x(j)

∣∣∣ \ ∣∣∣x(i) ∩ x(j)
∣∣∣ . (2.5)

Using the similarity matrix, S, a clustering of the different clusters is
found by using spectral graph partitioning to find meta-clusters, as outlined
in Algorithm 3. Each individual node is assigned to the meta-cluster (com-
munity) it most often belongs to, breaking ties randomly. [15, 15]

10

Figure 2.2: a) The two overlapping sets x(i) and x(j). b) The intersection, x(i) ∩
x(j), between the sets. c) The symmetric difference (2.5) between the sets.

2.3 Community detection

Networks in general and social networks in particular often contain some
form of group structure known as communities (other common terms used
are partitions, modules, and clusters). Recall that in the context of data
clustering each node inside a community is in some sense similar to its
neighbors.

For example, we can often find friends, family, and colleagues in the
social network of a typical person. These groups can be quite isolated with
not many friendships existing between these different groups. In this case,
these three groups are the communities of the network. They are also similar
in regard with their position and social roles in the network. Therefore, it is
in general possible to use the obtained community structure for identifying
social roles, hierarchies and hidden groups within the network data material.

Example 2 (Community structure). In Figure 2.3, the community struc-
ture of a small network with 16 nodes is shown. Note the difference in the
inside community degree and the between community degree.

Figure 2.3: Two communities in a simple network. The number of edges in each
community is much higher than between the two communities.

11

This section continues with discussions of the properties of community
structures and methods to find and evaluate them. The next section contains
a review of some different standard community detection methods.

2.3.1 Existence and uniqueness

Finding communities requires a formal definition of a community that de-
pends on quantifiable network properties. Many different quantitative and
qualitative definitions of communities have been proposed on local and
global scales in networks. Despite this, no single satisfactory definition has
been presented and it is unlikely that it is possible to define a community
in general terms. As a result, nearly all network scientists have their own
definition of a community and large variations between disciplines are com-
mon.

In this thesis, we are satisfied with the qualitative definition presented in
Definition 3. The main problem with the adopted definition of a community
is the lack of a quantified explanation of what denser means.

Definition 3 (Community). A community (in qualitative terms) is a subset
of nodes within a network such that connections between nodes are denser
than connections with the rest of the network. [32]

A difficult problem in network analysis is proving the existence and
uniqueness of community structures. This complication arises primarily as
a result of the lack of a universal definition of a community. A pragmatic
approach is used to evade that complication in this thesis. It is assumed
that a community is simply the structure found by a community detection
algorithm.

No concern is given to the problem of proving that the community exists
and is not an artifact from the collected data and methods used. The focus is
instead on how accurate these communities can be found using the methods
proposed. A problem with the adopted pragmatic approach is that different
community detection algorithms produce different community structures,
making it impossible to tell which is the most correct with absolute certainty.

Figure 2.4: The communities of a small network with a tree like structure.

12

Example 3 (Communities or not?). Even if no formal general definition
exists for a community, some structures are often more expected as com-
munities than others. A counter-intuitive examples which illustrates some
problems with structures similar to trees and chains is shown in Figure 2.4.
These structures occur frequently in applications, as most community de-
tection algorithms require all nodes to be a member of a community. This
is the result of the low degree of the nodes contained in the chain or tree.
The problem is that these structures are not often seen as communities in
real life, so the question is if they are communities or not.

Networks often do not contain perfect communities where each node has
only one possible clustering; therefore clusters may not be entirely disjoint
and unique. As previously discussed hierarchical clustering methods are
able to find overlapping clusterings by the use of dendrograms. It is possible
to use the same methods in community detection, where methods utilize
hierarchical clustering. We briefly discuss4 the problem with overlapping
communities in Chapter 4.4 where data from the merging methods are used
to find confidence levels for the communities.

Some facts concerning community detection in general are important
to discuss before continuing with discussions on properties of communities.
Communities are a vague and fragile concept found in some real-world net-
works but seldom in randomly generated networks. Verification and evalua-
tion of detected communities are as difficult as in data clustering, although
some methods exist using e.g. resampling methods such as the bootstrap.

Finally, it is important to realize that in the end, the communities de-
tected in the networks are the result of the data which is the only input given.
Therefore as in all statistical methods, if the data is flawed the corresponding
community structure could be misleading and uncertain. Robustness analy-
sis and similar methods can be used to analyze the significance and stability
of the structure found, thereby mimicking hypothesis testing in statistics.

2.3.2 Validation and evaluation

In previous sections, validation of data clusterings were discussed and it was
concluded that it is a difficult problem to solve without external information.
It is in the nature of unsupervised methods as data clustering that it is
difficult to validate the results. The same problems as in data clustering
occur in community detection as this method also is unsupervised.

It is however still important to validate the structures found in some
manner and also to be able to quantify some goodness-of-fit measure. The
latter is useful in comparing different methods which is needed later on
in this thesis. Beginning with the validation problem, some help is found

4These problems are not discussed at length in this thesis, we refer interested readers
to Ref. [3] for methods available to detect overlapping communities in networks.

13

from the extensive work in data clustering methods. Although seldom used
in community detection, the previously introduced measures cohesion and
separation are useful when no external information is available.

Another common method in data clustering that has been generalized
to community detection problem is re-sampling methods. The idea behind
this technique is to perturb the network structure by randomly removing
some edges and investigate how the community structure changes. If the
structure is relatively robust it is safe to conclude that a significant structure
has been found. The re-sampling methods use are often non-parametric
and parametric bootstrap. An example of this is given in Ref. [12] where
the authors investigate changes in community structures over time, using
bootstrap to find the significance level of communities.

We now continue by discussing the problems of evaluating different com-
munity structures for both comparison and choosing the optimal number of
communities. In community detection problems a quality measure called
modularity is often used to solve these problems. Modularity measures the
degree to which the distribution of edges significantly differ from a random
network with the same degree distribution. As such, it is similar to test
statistics used in statistical hypothesis testing. In both areas, the statistic
is used to find how significantly different the solution is from randomness.
[33]

Modularity quantifies how significant the proposed community structure
is by comparing the solution to a null model, i.e. a random network satisfying
some property of the original network. This definition gives the modularity
an important drawback, that the measure only can be compared to commu-
nity structures found in the same network. Despite this, the measure is the
most commonly used method to solve problems with ranking and finding
the optimal number of communities. The modularity, Q(c), of a community
structure, c = (ci), is calculated as

Q(c) =
1

2m

n∑
i,j=1

(Aij −Nij) δ(ci, cj)

=
1

2m

n∑
i,j=1

(
Aij −

kikj
2m

)
δ(ci, cj), (2.6)

where ci is the community of which node i is a member, ki is the degree of
node i, A = [Aij] is the adjacency matrix, m is the number of edges, n is
the number of nodes, and δ is the Kronecker delta function. [33]

The null model in the original definition of modularity is a randomly
rewired network5, such that the expected degree in the rewired network is

5By using such a null model, it is assumed that random networks should not have any
community structure. Therefore this modularity measure compares a random solution
with no communities to the communities found in the original network.

14

the same as the degree of the node in the original network. From this,
we get the expected number (a result of the configuration model) of edges,
Nij = kikj/2m, between nodes i and j in the randomly rewired network.
[5, 3]

As the modularity describes the quality of a partitioning of a network
into communities, it is often assumed that a higher modularity corresponds
to a better partitioning. Maximizing the modularity in community detection
result is the same as maximizing the quality of the communities found. This
optimization problem has been shown to be NP-complete and is therefore
difficult to solve [34]. The modularity landscape is filled of many local
maximum points and therefore it is difficult to find the global maximum
[35]. Relaxed approximative methods are therefore needed to find an sub-
optimal community structure.

Although widely used, modularity has problems with the so called reso-
lution limit, i.e. the tendency to detect only larger features of the community
structure in a graph. Often modularity optimization favors larger clusters
over smaller clusters. One proposed solution is to introduce a scaling factor
to enable some tuning for detection of larger or smaller features. [36, 4, 3]

Another drawback is the tendency of higher modularity in random net-
works than in real-world networks. This result in problems with evaluating
different algorithms, as some algorithms which are good on random net-
works will perform worse on real-world networks. Some other measures
for evaluating the quality of the community structure found in simulations
are therefore needed. These community detection methods are discussed
in Chapters 2.1.3 and 5.4. Other methods that do not rely on modularity
maximization have also appeared, see Refs. [37, 38].

2.4 Algorithmic community detection

Historically, manual methods have been used to find community structures
in collected data. Humans are often good at finding structures in small and
sparse networks but manual methods are not practical for larger and denser
network. To solve this problem, many methods used on computers have
been proposed using different forms of iterative algorithms.

Despite this large effort, no completely satisfactory solution to commu-
nity detection problem has yet to been devised. The main explanation for
this is that community detection (maximization of modularity) is a NP-
complete optimization problems6, i.e. very time consuming and difficult to
solve in an exact form. Instead some form of approximations, stochastic

6As such, the modularity optimization problem can be rewritten as other well-known
NP-complete problems, i.e. the satisfiability problem, the travelling salesman problem and
the graph coloring problem.

15

simulations, or heuristic methods are often used to find sub-optimal solu-
tions.

Most community detection algorithms use at least one of these methods
to find communities in networks and each simplification leads to different
properties of the obtained solutions. For example, algorithms often have
built-in tendencies to find communities of different sizes but also often find
different community structures when applied to the same network. In gen-
eral, more complex community detection methods are more accurate and
robust in comparison with simpler and faster methods but are limited to
small sparse networks. Since more complex methods have fewer and better
motivated simplifications. As each method has different properties it is com-
mon to apply several different methods to the same problem and compare
the results.

The oldest community detection methods proposed are based on the re-
lated problem of graph partitioning7. This problem is common in computer
science and mathematics and has many applications. An important every-
day application is to determine the correct division of computational effort
on parallel computers8. Most graph partitioning methods are only able to
divide a network into two parts and often find solutions with a very small
cut set9. [5]

In this thesis, six different community detection methods are used to
detect communities in so called candidate networks. Some of the more
basic methods are based on well-known algorithms from computer science
and results from linear algebra using centrality measures from the analysis
of social networks. The more advanced methods are based on concepts
from statistical mechanics, statistical processes, and the study of Bayesian
networks. The discussion for each method could easily span many pages but
here only a brief explanation is given of the ideas behind the algorithms.

The community detection methods discussed are only a small sample of
the many methods that exist. Some of these methods show great promise
in applications, e.g clique percolation and synchronization. Other methods
have been developed for detecting communities in more complex graphs that
are weighted, directed, or dynamic. For thorough discussions and compar-
isons of all the proposed community detection methods, see Refs. [4, 3].

2.4.1 Divisive algorithm based on betweenness

The first community detection algorithm proposed is based on the between-
ness centrality measure, see Appendix B. A common interpretation of this

7See Appendix A for a discussion on graph partitioning problems.
8Often called the load balancing problem in practice, see e.g. some standard work on

parallel computation or Ref. [5] for more information.
9A cut set is the set of edges that need to be removed from a graph to generate two

disjoint components

16

centrality measure is the flow of information through a node or an edge.
The idea is to eliminate the edge with the highest betweenness centrality in
the network thereby separating the communities of the network. The algo-
rithm for finding the community structure using the betweenness centrality
method, is based on three steps as outlined in Algorithm 4.

Algorithm 4 Divisive edge betweenness

(i) find the edge with the highest betweenness centrality and remove it,

(ii) recalculate the edge betweenness for the edges in the network,

(iii) repeat from (i) until no edges remain.

The modularity is calculated after removing each edge, to find the mod-
ularity maximizing network clustering. This algorithm has a rather high
complexity O(n3). [39]

Some improvements have been proposed by various authors to decrease
the high complexity. Perhaps the simplest improvement is to approximate
the betweenness (introduced in Ref. [40]) by using a Monte Carlo estimation
procedure thereby limiting the number of shortest paths to calculate. An-
other method to decrease the complexity of the algorithm is by changing the
betweenness centrality measure to a simpler one. For example, in Ref. [32]
it is suggested to use the number of short loops of edges that the particular
edge is a part of.

Figure 2.5: The application of the betweenness algorithm on a simple network with
16 nodes. Dashed lines indicate three edges with the largest betweenness centrality.

Example 4 (Edge betweenness in action). To illustrate this idea, a simple
situation is depicted in Figure 2.5, where two communities are identified in
a simple network. Three dashed lines indicate edges with large betweenness
centrality. We remove these edges in three repetitions, recalculating10 the

10It is important to recalculate the betweenness measure, as it depends on the config-

17

betweenness for all edges after each removal. The resulting network con-
tains two disjoint partitions which are taken as the two communities in the
network.

2.4.2 Greedy agglomerative method

Another well-known community detection algorithm is based on a common
technique for finding optimal solutions to graph problems. This method is
called greedy optimization and surprisingly often finds the optimal solution
e.g. in finding the shortest path or maximum flow through a network. The
greedy method is a form of agglomerative hierarchical clustering which is
outlined in Algorithm 5.

Algorithm 5 Greedy agglomerative method

(i) start with n clusters (each containing one node),

(ii) compute the difference in modularity for each possible merge of clusters,

(iii) merge the two clusters that yield the largest increase (or no difference) in
modularity into one node,

(iv) repeating steps (ii)-(iii) until maximum modularity is reached.

This method bears a striking resemblance to the standard hierarchical
clustering method, using modularity as the similarity measure. The method
does not guarantee that the global maximum is found, but it has a low
complexity O(nlog2n). Thus this algorithm is more suitable for large graphs
than the previously discussed divisive algorithm. [41]

Some improvements have been discussed by various authors, e.g. in Ref.
[42] a factor is introduced to reduce the bias of the algorithm to favor large
clusters. In Ref. [43] the authors suggest moving a single vertex after the
original algorithm to another cluster, which is shown to find higher modu-
larity closer to the global maximum.

2.4.3 Spectral method

The third method is based on the singular decomposition of matrices and the
corresponding spectral graph partitioning problem, see Appendix A. Begin
by defining the modularity matrix, B = [Bij], as

Bij = Aij −
kikj
2m

, (2.7)

uration of edges, if one removes one edge the information will perhaps flow through a
longer path. This will result in that the edges composing the alternative route will have
an increased betweenness centrality.

18

where A = [Aij] is the adjacency matrix, ki is the degree of node i,
and m is the number of edges in the network. Let s = (si), where si ± 1,
denote the cluster that node i belongs to with only two clusters allowed (-1
for cluster 1 and 1 for cluster 2). The modularity (2.6) is written using a
singular matrix decomposition as

Q =
1

4m

n∑
i,j=1

Bijsisj =
1

4m
s>Bs =

1

4m

n∑
i=1

(u>i · s)2βi, (2.8)

where ui = (uij) are the eigenvectors for the modularity matrix and βi
is the eigenvalue of B corresponding to modularity matrix eigenvector ui.
Using the leading eigenvector and optimizing the modularity with respect
to si, one can show that the optimum value of the modularity is given by

s> =
n∑
j=1

sju1j , (2.9)

this allows for maximizing the modularity by solving sju1j > 0 for each
j = 1, 2, . . . , n. The resulting vector, sj , indicates the community to which
node j belongs. To cluster each meta-cluster into smaller clusters the steps
are redone again for ∆Q, the corresponding change in modularity due to a
division of the current clusters, instead of Q in (2.8), until the modularity
begins to decrease. [44, 5]

This algorithm has a complexity of order O(n2) and is often comple-
mented with moving a single node between communities, if this increases
the modularity, compare the Kernighan-Lin algorithm in Appendix A. [3]

2.4.4 Spin glass algorithm

The two most well-known models of magnets in statistical mechanics are the
Ising and Potts models. The Ising model allows for two different spin states
(up and down) whereas the more general q-Potts model uses q different spin
states. [45, 46, 47]

These states are placed in either a random or uniform lattice structure, in
which each spin variable interacts with other randomly selected or neighbor-
ing states. These interactions (couplings) between different spin states can
be either ferromagnetic, anti-ferromagnetic, or a mix of both types. In fer-
romagnetic (antiferromagnetic) couplings, the spins tend to align (disalign)
with their neighbors to minimize the total energy.

A spin glass is a generalization of the Ising and Potts models, i.e. a
model of magnets with disorder and frustration. The disorder is created
by setting the interactions between spins randomly. A spin state could
therefore interact with some spins as a ferromagnet and others as an anti-
ferromagnetic. In this model frustrations occur when these interactions do
not match, i.e. where spins are aligned such that the coupling is not fulfilled.

19

Example 5 (Frustration in a lattice). In Figure 2.6, a simple case is depicted
using the Ising model with nearest-neighbor interaction. The spin states are
indicated by the texture of the nodes (open for upward spins and closed for
downward spins), the plus and minus signs indicate the interaction between
spin states (+ for ferromagnetic). Frustration occurs when it is impossible
to arrange the spin states to satisfy the interactions, as is seen in the area
marked by the dashed circle.

Figure 2.6: An Ising spin glas model with frustration. The interactions on the
lattice structure do not allow for a perfect spin distribution. Not all the interactions
can be fulfilled at the same time, as seen in the red circle. ’+’ indicate ferromagnetic
interaction (align) and ’-’ anti-ferromagnetic (disalign).

A common problem in spin glass models is to find the ground-state en-
ergy, the minimum total energy which for this system is described by

H = −
∑
(i,j)

Jijδ(si, sj), (2.10)

where Jij is a (random) coupling constant for the spins at positions (i, j),
δ(·) is the Kronecker delta function, and si ∈ {1, 2, . . . , q} is the value of node
i. It is possible to show that finding the ground-state energy for some spin
glass models is an NP-complete problem. Using the spin glass formulation
these problem can be solved in relaxed form by stimulated annealing, which
is a heuristic optimization method. [48, 49]

In the community detection problem, Ref. [16] proposes a q-Potts spin
glass model to identify community structures in networks. The proposed
Hamiltonian for the system is

H = −J
n∑
i=1

n∑
j=1

Aijδ(σi, σj) + γ

q∑
k=1

(
sk
2

)
, (2.11)

20

where J and γ are coupling parameters, δ(·) is the Kronecker delta func-
tion, and sk is the number of spins in state k. The first term favors many
edges inside communities (i.e. few edges between communities) and the sec-
ond term favors an equal distribution of nodes in communities.

The energy minimum is found by using simulated annealing11, where all
the initial spins are assigned randomly and spins are changed with some
probability depending on the change of total energy. [48, 49]

The ratio γ/J is a scale factor that allows for tuning of the community
detection for larger or smaller communities. In the following simulation ex-
periments the coupling parameters are selected as J = γ = 1, thus making
existing and non-existing edges equally important12. Simulated annealing
optimizing is complex and therefore the algorithm is of rather high complex-
ity, O(n2+θ) with θ = 1.2 on sparse network. [16]

2.4.5 Random walk on networks

This method for detecting communities is based on the idea that a ran-
dom walker13 should spend more time within communities than between
them, since a community should have a higher intra-connectivity within the
community than inter-connectivity between communities.

The algorithm uses agglomerative hierarchical clustering with Ward’s
method to merge the different nodes into clusters. The merge of existing
nodes/clusters into some cluster Ck, is selected to be i and j which minimizes
the following expression

∆R(Ci, Cj) =
1

n

|Ci||Cj |
|Ci|+ |Cj |

r2
CiCj

, (2.12)

with the distance, rCiCj , between two nodes/clusters i and j defined as

rCiCj =

[
n∑
l=1

(P tCil
− P tCj l

)2

kl

]1/2

, (2.13)

where P tCil
is the probability to travel from community Ci to node l in t

steps and kl is the degree of node l. In the simulation study, the probabilities
are estimated using a random walk with four steps. After a merge, the
different quantities are recalculated and the algorithm is repeated until all
nodes/clusters have been merged. The appropriate number of final clusters
is determined by the maximum in the modularity. The expected complexity
of this algorithm is O(n2 log n). [50, 3]

11With initial and final temperatures T0 = 1 and Tt = 0.1, and cooling factor 0.99.
12These parameter settings limit the method to find only communities larger than

√
m.

13As discussed in Appendix A, random walks can be used to explore some structures of
social networks.

21

2.4.6 Label propagation

The last method is called label propagation and operates by assigning labels
to each node in the network and letting the labels propagate. Each node is
initially given an unique label which is changed depending on the most com-
mon label of the neighboring nodes. This is equivalent to the requirement
that a node should be connected more densely to nodes in the same commu-
nity than to other nodes. Therefore the most common label of neighboring
nodes should be the community in which the node is a member. The labels
propagate through the network stochastically using an iterative algorithm
outlined in Algorithm 6.

Algorithm 6 Label propagation

(i) initialize the labels at all nodes in the network by setting the label, `i(t =
0) = i, for each node i and set t = 1,

(ii) sample a node without replacement i ∈ V (G), let

`i(t) = cm
[
`i1(t), . . . , `im(t), `i(m+1)(t− 1), . . . , `ik(t− 1)

]
, (2.14)

where cm(·) is a function returning the most frequent label, breaking ties
randomly,

(iii) if every node has a label which is the same as the label of the maximal number
of their neighbors, then stop. Otherwise set t = t+ 1 and repeat from (ii).

This algorithm produces different community structures for each run,
due to its stochastic nature in both selecting the updating order for nodes
and the random breaking of ties. Therefore, the authors originally proposing
this method in Ref. [11] merge five runs of the algorithm and present this
merged structure as the communities found in the network. The merging
method used is quite dissimilar to the methods proposed in this thesis, but
shows nevertheless that the method generates good results when aggregating
a few runs. Merging runs of this algorithm is further discussed in Chapter
6.1 as a possible application for the proposed merging methods.

It is worth mentioning this algorithm is a zero-temperature version of
the spin glass method using q-Potts model. As a result of the modularity
(energy) landscape, it is difficult to find the global maximum using this
method although the method is very fast and has almost linear complexity,
O(m). Note that the number of edges in the network, m, often is larger than
the number of nodes, n, but m ≤ n

2 (n− 1) < n2. Resulting in a rather low
complexity compared to other algorithms of complexity O(n2), but often
slower than algorithms with complexity O(n log n). [11, 3]

22

Chapter 3

Uncertain and imperfect
networks

The first step in detecting communities in networks is to formulate a graph
structure consistent with the available information. Assume for the remain-
der of this thesis that network data is gathered using some methods that
allows for estimating the uncertainty in the observed data. It is further
assumed that a large portion of the data is uncertain and try to utilize the
data in the best possible manner.

In previous work, data sets are often considered certain and the uncer-
tainty is removed by using one of three alternatives: (i) include all edges
and nodes found, thereby possibly adding false nodes and edges into the
network, (ii) remove all uncertain edges and nodes, thereby risking prob-
lems with missing edges and sparse networks, (iii) include all edges with an
existence probability higher than some limit value, p̂, thereby removing a
number of edges keeping the remaining as certain edges. The third alterna-
tive could be successful in applications if p̂ is known but it is probable that
it depends on the underlying network structure. Thereby it is not easily
estimated prior to simulation runs.

It is not difficult to realize that the three alternatives given generate
different network structures and hence also different detected communities.
In all the possibilities given, some useful network information is lost therefore
risking a suboptimal detection of the community structure. An additional
alternative is to use the probabilities as weights together with a community
detection method supporting weighted graphs. The problem with this is that
high-order network structures are neglected as a community is determined
by more than the neighbors of each node independently. This approach is
later analyzed in Chapters 4.3.1 and 6.2.

In this thesis, an alternative method is proposed that uses an observation
model together with a sampling method. This method does not approximate
the uncertain network as a certain network, but rather keeps all information

23

found to detect the best community structure possible.

We continue this chapter by discussing an observation model of networks
and discuss some possible future generalizations of the model to include
more interesting difficulties encountered in practical applications. Some
frameworks to quantify and combine several different sources of informa-
tion are introduced to estimate imperfect networks: (i) probability theory,
(ii) Dempster-Shafer theory, and (iii) Fuzzy-set theory. The outputs of these
methods are added to the network structure, from which an ensemble of con-
sistent networks is created. In Chapters 4 and 5, we discuss how to use this
information to detect the community structure in the uncertain network.

3.1 Observation model

The observation model is a formalization of the problem with observation
of an underlying network by the use of other related networks. Often it
is not possible to observe the network of interest directly and therefore a
proxy network has to be used as an approximation. A classical example
of this is using the communication network between people as a proxy of
different kinds of relations. People with stronger connections and deeper
relationships are assumed to communicate more often or in some detectable
characteristic pattern.

Formalizing this, we assume that the real network, f , is not directly
observable, but similar to a proxy network, g, to estimate the underlying
network. By using this other network to describe the network of interest
several different problems are encountered, e.g. finding edges in the observed
network which does not exist in the real network etc. Assume that an edge
existence probability, P(gij), i.e. the probability that an edge exist (or does
not exist) in the observed network, g, between nodes i and j can be found
as

P(gij) = FP + TP = P(gij |¬fij) + P(gij |fij), (3.1)

P(¬gij) = TN + FN = P(¬gij |¬fij) + P(¬gij |fij), (3.2)

where FP(N) denotes False Positive (Negative), TP(N) denotes True Pos-
itive (Negative), and P(·) is the observation probability. The probability,
P(gij), should in some aspect indicate the uncertainty of the information
regarding the edge, gij . High probabilities indicate strong evidence for the
hypothesis that the edge exist in the real network. Smaller probabilities in-
dicate vague or contradicting evidence. This is an observation model which
links the observed with the real network and formalizes the uncertainty in
using this approximation.

Example 6 (Uncertain network). The simplest example of how to find
a quantitative measure of the edge uncertainty is to analyze information

24

flowing over some network. Assume that e-mails are gathered and analyzed,
resulting in labeling regarding content. A measure of the certainty of an edge
in the network is found by determining the fraction of e-mails with relevant
subjects of the total amount of exchanged e-mail. This proxy network could
be visualized in the same manner as a small example shown in Figure 3.1
with some edge existence probabilities, Eij = P(gij).

Figure 3.1: A small uncertain network with edge existence probabilities.

False positives and negatives have been given much attention in previous
works. False negatives are called missing edges in network science and the
impact of them is investigated in e.g. Ref. [51]. It is well-known that missing
edges may cause severe problems leading to radically altered community
structures, especially in sparse networks. False positives are called false
edges and are interpreted as some noise introduced in the network. These
can alter the network structure and the detected communities in much the
same manner as missing edges. In practical applications these problems are
common as proxy networks often are used to estimate the underlying real
network structure. Uncertain networks in combination with missing/false
edges form imperfect networks defined in Definition 4.

Definition 4 (Imperfect networks). An uncertain network is a graph, G(V,E),
where V is a set of nodes and E = [Eij] is some edge existence probability
matrix with Eij = P(gij) as the probability that an edge exists between
nodes i and j. An imperfect network is an uncertain network with missing
and false edges, i.e. edges that do (not) exist in the real (observed) but not
in the observed (real) network.

25

Figure 3.2: Schematic representation of the imperfect network and the relation
between the observed and real networks. Given an unobservable real network,
we can estimate an imperfect network by combining a number of evidences using
uncertainty theory. The result is an estimated network structure with existence
probabilities which can be analyzed by the methods developed in this thesis.

3.2 Generalizing the observation model

Edges are not the only uncertain and imperfect objects found in imperfect
networks, more complex structures and objects may also be uncertain, miss-
ing, or falsely included. Nodes can be modeled in the same manner as edges,
i.e. the network may contain uncertain, missing and false nodes. In this case,
false nodes could mean that two nodes in the observed network are really
only one in the real network. The probabilities can also describe different
network structures, e.g. triangles, n-cliques, paths, and trees. Adding evi-
dence regarding these structures can improve the estimated network struc-
ture found using observed network data.

26

We can further use additional sources of information and not only ob-
served networks. As shown in Figure 3.2, it is possible to combine many
different kinds of observations to form an imperfect network. Evidence A
and B are some kind of observed network structures that are assumed to
be similar to the real network. These proxy networks can be found from
e.g. communication networks, observational data, or information gathered
from witnesses and other sources. These observed networks can be modeled
either by estimating the probability that edges exist or the probability that
the entire structure exist.

Evidence C contains information about some nodes in the network and
the probability that they exist and are unique. As they form a triangle
(3-clique) it could be possible that those three observed nodes are only one
node in the real network. Evidence D and E are examples of probabilities
that certain structures exist in the network, e.g. subgraphs of a certain type
or paths. This is an advantage as social networks often contain e.g. many
triangles between nodes, as friends of a person often met and form friend-
ships. This is called triadic closure and is well documented in sociological
experiments as well as in analysis of real-world social network information.
[52]

Using the framework built in the remaining part of this chapter, it is pos-
sible to combine different sources of information to estimate an imperfect
network. The resulting structure from a combination of evidences is an im-
perfect network with existence probabilities for edges, nodes, and structures
as well as missing and false edges.

3.3 Probability theory

The classical method to quantify uncertainty is Probability Theory (PT)
using Bayesian inference. The probability, p, that some eventX has occurred
is determined by a probability function, p = P(X). The main drawback of
probability theory is that it is binary and can therefore only be used to
calculate probabilities that an event has occurred or not. This also means
that if an event has not happened, its complement must have. The axiomatic
definition of the probability function, P(·), is given in Definition 5. [53]

Definition 5 (Probability function). A probability function, P(X), for a dis-
crete random variable with an event space, Ω, satisfies the following axioms

P(Ø) = 0, (3.3)

P(Ω) = 1, (3.4)

P(A ∪B) = P(A) + P(B), (3.5)

when A and B are some events, A,B ⊆ Ω, which are independent, A∩B = Ø.

27

The last axiom (3.5) states that probabilities are additive for indepen-
dent events. This is a core feature of probability theory which allows for
the simplification of probability structures. By conditioning variables large
simplifications are often obtained. This is also the corner stone of Bayesian
interference which is based on Bayes’ theorem, presented in Theorem 1. [54]

Theorem 1 (Bayes’ theorem). Let ΩX×Y = ΩX×ΩY be a joint event space
with X ∈ ΩX and Y ∈ ΩY some random variables then

P(X|y) =
P(y|X)P(X)∑
x∈ΩX

P(y|x)P(x)
, (3.6)

where P(X|y) is the posterior probability function, P(y|X) the likelihood
function, and P(X) the prior probability function.

Bayes’s theorem states that given some prior probability (function) it is
possible to incorporate new evidence using a likelihood function. This result
in an updated posterior probability which include the additional informa-
tion. The application for this is often to combine evidence from different
sources. Let y and z be some evidence observed, then the posterior proba-
bility of X is found using

P(X|y, z) =
P(y, z|X)P(X)∑
x∈ΩX

P(y, z|x)P(x)
. (3.7)

This allows for merging evidences regarding the uncertainty of the network
structure to generate an edge existence probability. [54]

3.4 Dempster-Shafer theory

The theory of evidence, or Dempster-Shafer Theory (DST), is a generaliza-
tion of probability theory which relaxes the axiom of additivity and intro-
duces a different method for merging evidence from multiple sources. The
theory also allows for the construction of intervals with upper and lower
probabilities to include the uncertainty in merged conflicting evidence. DST
is popular in some areas of artificial intelligence, decision support, and data
fusion. Instead of probability functions, the theory of evidence uses belief
and plausibility functions, defined in Definition 6. [55, 53]

Definition 6 (Belief and plausibility functions). Assume that the frame of
discernment, Θ, is a finite set and let 2Θ denote the set of all subsets of Θ.

28

Suppose that the belief function Bel : 2Θ → [0, 1] satisfies the following1

Bel(Ø) = 0, (3.9)

Bel(Θ) = 1, (3.10)

Bel (A1 ∪ . . . ∪An) ≥
∑
i

Bel (Ai)−
∑
i<j

Bel (Ai ∩Aj)

+ . . .+ (−1)n−1Bel (A1 ∩ . . . ∩An)), (3.11)

where n is some positive integer and every collection, A1, . . . , An, is a subset
of 2Θ. The plausibility function Pl : 2Θ → [0, 1] is the dual of the belief
function

Pl(A) = 1− Bel(Ac), (3.12)

where Ac denotes the complement of the subset A ⊂ 2Θ.

The Belief function, Bel(A), is interpreted as the belief that the truth lies
in some subset of the set A. The Plausibility function, Pl(·), measures the
failure to doubt the truth and note2 that Bel(A) ≤ Pl(A) for each A ⊆ 2Θ.
Therefore the probability that the truth lie in A is given by the interval
[Bel(A),Pl(A)]. [55]

Combining probabilities from different sources is the essence of infor-
mation fusion. Dempster-Shafer theory allows for combining evidence in a
more general manner than in probability theory, presented in Theorem 2.
Although no prior probabilities and likelihood functions are needed, we need
to have a mass function, m(·), that assigns probability masses to the frame
of discernment, Θ. [53]

Theorem 2 (Dempster’s rule of combination). Let mi : 2Θ → [0, 1], for
i = 1, 2, be two (different) basic probability assignment functions on some
frame of discernment, Θ, satisfying

m(Ø) = 0, and,
∑
A∈2Θ

m(A) = 1. (3.13)

The combined belief of a subset A ⊆ 2Θ is

m1,2(A) = (m1 ⊕m2)(A) = [1−K]−1
∑

B∩C=A 6=Ø

m1(B)m2(C), (3.14)

1The third condition (3.11) is related to the inclusion-exclusion principle in probability
theory ∣∣∣∣∣

n⋃
i=1

ai

∣∣∣∣∣ =

n∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj |+ . . . + (−1)n−1 |A1 ∩ · · ·An| , (3.8)

which is similar to the condition if Bel(Ai) = |Ai| but has an equality where (3.11) has an
inequality.

2This is due to that the belief is sub-additive, Bel(A) + Bel(Ac) ≤ 1 and plausibility
is super-additive, Pl(A) + Pl(Ac) ≥ 1. Probability is additive and does in some situations
coincide with the belief and plausibility, when Bel(A) + Bel(Ac) = Pl(A) + Pl(Ac) = 1.

29

where m1,2(Ø) = 0 and K is the amount of conflict between the two beliefs
defined by

K =
∑

B∩C=Ø

m1(B)m2(C). (3.15)

By using the basic probability assignment function, m(·), the belief and
plausibility is found by the following expression

Bel(A) =
∑
B⊂A

m(B), Pl(A) =
∑

B∩A 6=Ø

m(B), (3.16)

thus allowing for combination of evidence to construct probability intervals.
By repeatedly adding evidence using this rule of combination, e.g. four evi-
dences are combined using

m1,2,3,4(A) = (((m1 ⊕m2)⊕m3)⊕m4)(A), (3.17)

any number of evidence can be combined. DST can thus be used to quantify
the uncertainty in a network by combining evidence from several different
sources. [55]

Example 7 (Combination of evidence in PT and DST). Assume that we
are interested to determine whether two persons, i and j, are friends. Let
a graph, G(V,E), be a social network where each node, vi ∈ V , is a person
and an edge, eij ∈ E, indicates if they are friends. Further assume that we
can not observe the real network, G, directly but instead can observe some
other networks and evidence.

The first evidence, denoted A, indicates that the two persons have at-
tended the same school and taken the same classes. Statistical surveys
indicate that an average student is friends with about 70% of the other stu-
dents attending the same classes. Summarizing the evidence A in terms of
the Dempster-Shafer theory, we obtain

mA(Eij) = 0.70, mA(¬Eij) = 0, mA(Θ) = 0.30, (3.18)

where m(·) denotes some mass function and Θ is the frame of discernment3.
In terms of probability theory, we determine that there is a 70% probability
that the two persons are friends and a 30% probability that they do not. In
the Dempster-Shafer view, we have some evidence supporting the hypothesis
that they are friends, but no evidence to contradict it.

Another observed evidence, called B, is a friend of person i and j saying
that they are not friends. We have somehow estimated the probability that
this friend is lying as 20%. From this the mass function can be found for,
m2(Eij), i.e. the probability that i and j are close friends

mB(Eij) = 0, mB(¬Eij) = 0.80, mB(Θ) = 0.20. (3.19)

3That is any combination of that they attend the same classes, are friends etc.

30

Finally these evidences can be combined using Theorem 2 as

mA,B(Eij) = (mA ⊕mB)(Eij). (3.20)

The different values for the two mass functions mA and mB are summarized
in Table 3.1 and is used in the following calculations. We begin by cal-

mA / mB Eij : 0 ¬Eij : 0.80 Θ : 0.20
Eij : 0.70 0 0.56 0.14
¬Eij : 0 0 0 0
Θ : 0.30 0 0.24 0.06

Table 3.1: The combined mass function for any subset of Θ.

culating the amount of conflict, K, between the two mass functions. This
is accomplished by summation of the mass functions such that M ∩ N =
Ø, in our problem this is all combinations of Eij and ¬Eij . Which are
mA(Eij)mB(¬Eij) and mA(¬Eij)mB(Eij), because Eij ∩ ¬Eij = Ø. The
sum of conflict is therefore

K = mA(Eij)mB(¬Eij) +mA(¬Eij)mB(Eij) = 0.70 · 0.80 = 0.56. (3.21)

Proceeding with combining the evidence for the different possible cases using
(3.14)

m(Eij) = 0.32, m(¬Eij) = 0.545, m(¬Eij , Eij) = 0.135. (3.22)

We conclude that it is uncertain that whether two persons i and j are friends.
Also there is a conflict, K = 0.56, between the two evidences. Using these
mass functions, we find the belief, plausibility, and the corresponding prob-
ability interval

[Bel(Eij),Pl(Eij)] = [0.320, 0.320 + 0.135] . (3.23)

A probability interval for the hypothesis that the two persons are friends
is thus found as [0.320, 0.455]. To improve upon this interval, we could use
another evidence and the same rule of combination once more.

For probability theory, the corresponding result can be found using (3.7)
and assuming equal prior probabilities P(x) = 0.5, we have

P(Eij |A,B) =
P(A,B|Eij)

P(A,B|Eij) + P(A,B|¬Eij)
(3.24)

=
0.70 · 0.20

0.70 · 0.20 + 0.30 · 0.80
= 0.368. (3.25)

Assuming independent probabilities, the calculation yields the conditional
probability as 0.40 for the hypothesis that they are friends is true.

31

3.5 Fuzzy-Set theory

Another generalization of probability theory is known as Fuzzy-Set theory,
which was developed to counter the drawback in probability theory that the
statement that some event has occurred must either be absolutely true or
false. In comparison with classical sets, fuzzy sets have two main differences:
(i) an element is allowed to exist in several sets simultaneously, (ii) fuzzy
sets have fuzzy boundaries (which cannot be precisely defined) in comparison
with crisp boundaries. [53]

Definition 7 (Fuzzy set). Let Θ denote some finite set, then a fuzzy set
A of Θ is defined by a membership function, µA : Θ → L, where L is an
ordered set of membership values and µA is the grade of membership of the
element θ ∈ Θ in A.

If the membership grade, µA(θ) = 1, it is said that θ certainly belong
to A and if µA(θ) = 0 then θ certainly does not belong to A. For all other
values of the membership grade, the element θ is a fuzzy member of A. This
corresponds to the notion of probability and belief, which can be used to
quantify the uncertainty of the network structure. In crisp set theory the
membership grade, µA(θ)→ {0, 1}, i.e. only assumes the values 0 and 1. It
is possible to merge different fuzzy sets by an aggregation operation, where
the aggregation operator, h : [0, 1]n → [0, 1], is used to combine n fuzzy sets
as

µA(θ) = h(µA1(θ), . . . , µAN (θ)), (3.26)

where h is a bounded, monotonically increasing, continuous, symmetric
function. A common aggregation function of some degrees of membership,
xi = µAi(θ), is the generalized means, hβ(·) and the ordered weighted aver-
age, hw(·), defined as

hβ(x1, x2, . . . , xn) =

[
1

n

n∑
i=1

xβi

]1/β

, (3.27)

hw(x1, x2, . . . , xn, θ) =
n∑
i=1

wix(i), (3.28)

where β is some real number,
∑

iwi = 1 and y(i) denotes element i in the
(decreasingly) sorted values of xi. Thus the degree of membership can be
used to quantify uncertainty in the network structure, if a suitable member-
ship function can be found. [53]

Example 8. Continuing on Example 7 using fuzzy-set theory, we can com-
bine the evidence using the two aggregation functions introduced above.
Using the notation of fuzzy sets, x1 = 0.70 and x2 = 0, as the evidence A

32

was 70% that they are friends and evidence B 0%. Using these two aggre-
gations we find

h
1
2 (x1, x2) =

√
0.70 + 0

2
= 0.591, (3.29)

h 1
n

(x1, x2) =
0.70 + 0

2
= 0.350, (3.30)

using β = 1/2 and equal weights for all sets, w = 1/n. Note that these two
probabilities are somewhat different then those found by PT and DST. It
is therefore not straight-forward to select the best method and aggregation
methods.

33

34

Chapter 4

Detecting communities in
imperfect networks

This chapter contains the proposed method that in combination with the
framework introduced in Chapter 3 enables for community detection in im-
perfect networks.

The complete method is outlined in Figure 4.1, with network data at
the top and ending with an estimated community structure. In practical
applications of this method, we would use the results presented in previ-
ous chapters to combine evidence from proxy networks and other forms of
collected information to find an estimated network structure with existence
probabilities. The result is called an imperfect network, which is a simplified
schematic representation of Figure 3.2 and the starting point of this chapter.

The steps in Figure 4.1, outlined in detail in this chapter are: (i) sam-
pling candidate networks from the ensemble of consistent networks using
(Markov Chain) Monte Carlo-methods. (ii) detecting candidate communi-
ties using standard methods discussed in Chapter 2.4. (iii) merging can-
didate communities, using methods based on ensemble clustering discussed
in Chapter 2.2, into the most probable community structure of the uncer-
tain/imperfect network.

In the last section of this chapter, it is demonstrated how the confidence
of the resulting community structure can be estimated using data from the
merging methods.

4.1 Sampling candidate networks

The introduced methods for quantifying and combining uncertainty in net-
work information all result in a probability or a probability interval. These
measures correspond to the degree of uncertainty that an edge, node, or
structure exists in the network.

35

Figure 4.1: The proposed method to detect communities in imperfect networks.

36

An uncertain network, G(V,E), is constructed from these existence prob-
abilities, E = [Eij], where e.g. Eij is the probability that an edge exist be-
tween nodes i and j. We limit ourselves to probabilities describing uncertain
edges in this thesis, however there are generalizations for other uncertain ob-
jects1 and also using probability intervals2 to quantify uncertainty.

The first step in detecting communities in uncertain networks is to gen-
erate an ensemble of networks that are consistent with the network infor-
mation. Realizations are found using Monte Carlo-sampling with the exis-
tence probabilities, Eij . The sampling3 is performed using uniformly dis-
tributed random numbers to generate a symmetric matrix, R = [Rij], where
Rij ∼ U [0, 1] with Rij = Rji.

An edge is included in the graph if the random element in the correspond-
ing matrix is less than or equal to the product of the corresponding elements
of the edge probability matrix and the adjacency matrix, i.e. Rij ≤ EijAij .
By simulating many random matrices, R, a large ensemble of certain net-
works are generated, each consistent with the information in the uncertain
network. The sampled networks are called candidate networks or realizations
of the ensemble of consistent networks.

A simple situation using this sampling method in shown in Figure 4.2,
where a small network is sampled. The ensemble of consistent networks
consist of the four different possible permutations of the network structure.
Each permutation exists with a proportion pi and therefore also has the
probability pi of being sampled.

This example can be used as a basis for constructing candidate networks
instead of sampling them from a larger ensemble. A perfect set of candidate
networks can be constructed by including an edge in a fraction of the set
which corresponds to the given probability. This is however impractical for
larger networks which have a large number of possible permutations. In
these cases, sampling is useful to estimate the properties of the ensemble
without knowing all communities in the possible permutations.

1In a more general setting, the first step would be to sample the nodes to include in
the network. The second step would be to sample edges between the included nodes and
finally sampling higher-order structures to include in the network. Another method is by
sampling structures first then nodes and edges. Despite the chosen order an imperfect
network, G(V,E,S), have existence probabilities for nodes, edges, and structures.

2Sampling from intervals is not covered in this section but perhaps the simplest method
is to used the center point of the interval as a probability. Another viable method is Markov
Chain Monte Carlo using the Metropolis-Hastings algorithm. The aim of the sampling
method is to create realizations of the imperfect network thar as consistent as possible.
This is accomplished by accepting the inclusion of edges that contribute to generating a
network in which the e.g. the degree distribution is similar to the imperfect information.

3No variance reduction method has been applied in the sampling step. The inclusion
of such a method may reduce the number of required samplings, ns, and is an important
subject for further study. The simplest method to apply is probably stratified sampling.
By estimating the distribution of the edge probabilities one could adapt the sampling
method to sample more or less certain edges etc.

37

Figure 4.2: A small uncertain network and its corresponding ensemble of networks.
The proportion of networks of a certain form in the ensemble is determined by the
edge existence probabilities.

The idea is therefore to mimic the main features of the distribution of
permutations in the ensemble by sampling many networks from the ensem-
ble. So that if 50 networks are sampled from the ensemble, then approx-
imately 12 should be of the first type of permutation in which no edge is
removed and so on.

To simplify simulations, all nodes of degree one are removed during the
community detection and merging steps. After those steps, the nodes with
degree one are reinserted into to the network again. The removed nodes (all
of degree one) are assigned to the same community as their neighbor. As
a further simplification, the community detection is only performed on the
largest component of the graph.

4.2 Detecting candidate communities

For each realization of the imperfect network some community detection al-
gorithms4 are applied. All these detection methods are based on the assump-
tion that maximizing modularity is equivalent to maximizing the quality of
the community clustering.

The community structures of each candidate network are referred to as
candidate communities. The community structures for the ns candidate
networks of the uncertain network are summarized in a membership matrix,

4In the following simulation experiments, the implementations in the R-package igraph
[56, 57] are used to detect communities and calculate network properties . The standard
parameters for each algorithm, as presented in connection with the review of each method
in Chapter 2.4 are used.

38

M = [Mik], where Mik is the community in which node i is a member in
candidate network k = {1, 2, . . . , ns} and ns is the number of samplings.

4.3 Merging candidate communities

The final problem is to merge the different community structures found
in each candidate network into one community structure. Earlier works
used some voting method or graph matching technique to accomplish this.
In this thesis, we propose to instead construct a mean of the candidate
communities using other types of merging methods. This is accomplished
by merging nodes often found in the same cluster or by merging similar
candidate communities.

Three different methods are proposed to accomplish this: (i) using a two-
step fusion of communities, (ii) node-based fusion of communities, and (iii)
community-based fusion of communities. The two latter methods are based
on the ensemble clustering method for data sets, introduced in Section 2.2.
An example of the resulting community structure is shown in Figure 4.3,
as the merged community structure from 10 candidate communities using
community-based fusion of communities.

4.3.1 Two-step Fusion of Communities

The first method, Two-step Fusion of Communities (TFC) can be used by
community detection algorithms that handle weighted graphs5. The steps
used in the method are outlined in Figure 4.4 and begin with creating a
(complete) graph, G(V,F), with the same nodes as before and the frequency
matrix element Fij as the weight of the edge between nodes i and j. Each
edge in the network indicates that two nodes have been placed in the same
candidate community. The weight is the number of times the two nodes i
and j are found in the same candidate community.

The next step is to detect communities in the weighted network, G, by
applying a community detection algorithm. The method used for detect-
ing the communities can be different in the two steps. The communities
detected in the last step are taken as the communities of the merged candi-
date communities.

Another approach to this problem is to use the existence probability
matrix, E, instead of the frequency matrix, F. This would save a lot of
computational effort to sample candidate networks and to determine the
community structure of each. This approximation however neglect all higher
order network structures that contribute to community structures. Not only

5The following previoulsy introduced community detection methods are able to handle
weighted networks: greedy agglomerative method, spin glass, random walk on the network,
and label propagation.

39

EB (n: 3, Q: 0.459) GA (n: 3, Q: 0.459) SM (n: 1, Q: 0)

SP (n: 3, Q: 0.459) WT (n: 3, Q: 0.347) LP (n: 2, Q: 0.328)

Figure 4.3: The communities found in the network Synthetic 1 (see Chapter 5.1)
using CFC. Q denotes the modularity, n the number of detected communities,
and the colors indicate the community to which the node belongs. The correct
community structure is shown in Figure 5.2.

Figure 4.4: Two-step Fusion using a weighted community detection method.

40

simple structures such as edges are important and this approximation is
thereby probably not valid. This is investigated further in the following
simulation experiments.

This method depends on the performance of the community detection
algorithms used. If slower but more accurate methods are used, the cor-
responding merge result is more accurate but TFC is slower. As in gen-
eral, faster algorithms for community detection find the merged communi-
ties faster but are more inaccurate. The complexity of TFC is the same as
the complexity of the community detection method used.

4.3.2 Node-based Fusion of Communities

The second method, Node-based Fusion of Communities (NFC) is an exten-
sion of Instance-based Ensemble Clustering presented in Refs. [14, 15] and
previously discussed in Section 2.2. NFC is similar to TFC but uses agglom-
erative hierarchical clustering to group the nodes of the weighted graph into
clusters instead of applying a community detection algorithm to the graph.

The NFC-method is outlined in Figure 4.5 which begins with the con-
struction of a complete graph G = (V,F) from the candidate communities.
In the new graph, nodes are the same as in the original network but the
edges have a different interpretation. As in TFC, the new weighted edges
correspond to the frequency of instances when two nodes have been grouped
together in the same candidate community. This differs from the other in-
terpretation that the edge weight correspond to the probability that an edge
exist between two nodes.

The nodes are clustered using agglomerative hierarchical clustering with
the edge weight as the similarity between two nodes. Thus nodes often
found in the same candidate cluster are grouped together by the hierarchical
clustering method. Note that the difference compared to TFC is that the
NFC can handle the problem with higher-order structures mentioned above.

Figure 4.5: Node-based Fusion using agglomerative hierarchical clustering.

The main difference with this method compared to IBEC is the pro-
cess in which the frequency, Fij , is recalculated after each merge. The fre-

41

quency between the merged nodes (cluster) l and the other nodes or clusters,
v1, v2, . . . , vnl

, is found by

Fk,l =

∣∣∣∣∣⋂
k

Mkl

∣∣∣∣∣ , (4.1)

where the membership matrix, M = [Mik], where Mik is the community in
which node i is a member in candidate network k = {j, i1, . . . , inl

}. That is,
Fk,l is the number of occurrences where all nodes (in both clusters) are in
the same candidate cluster.

This linkage rule incurs some loss of information about individual nodes
as they are clustered together and information about the similarity of in-
dividual nodes are lost. The result of the hierarchical clustering algorithm
is a dendrogram and a list of merges. The clustering corresponding to the
maximum modularity is taken as the communities found in the merged can-
didate networks. The complexity of NFC is determined by the hierarchical
clustering algorithm and therefore is O(n2).

4.3.3 Community-based Fusion of Communities

The third method is based on Community-based Ensemble Clustering and
singular value decomposition of the similarity matrix, S = [Sij] = [sim(i, j)].
This method is quite dissimilar to TFC and NFC because it is based on
merging similar clusters and not similar nodes.

The full method for merging candidate communities using Community-
based Fusion of Communities (CFC) is outlined in Figure 4.6. The first
step is to construct a complete graph G = (V,S), with a set of nodes, V (G),
consisting of each candidate cluster, Ci. The similarity matrix, S = [Sij], is
calculated using the cosine measure

Sij =
|Ci ∩ Cj |√
|Ci| |Cj |

, (4.2)

where Ci and Cj are candidate clusters for some number of clusters R such
that i, j = 1, . . . , R and i 6= j. This measure is chosen due to its linearity and
that it is scaled to unity. The similarity matrix is expanded using singular
value decomposition, in the same manner as discussed in Algorithm 2.2.2.
This is done by first normalizing and calculating the k largest eigenvectors
of the similarity matrix, L. These are placed as rows in a new matrix which
is normalized and partitioned using k-means clustering.

Each node, from the original network, is assigned to the community of
which it is most often a member of by voting and breaking ties randomly.
This is repeated for all possible values of k ≤ R, to find the final commu-
nity structure of the network, i.e. the one that maximizes the modularity.

42

Figure 4.6: Community-based Fusion using k-means clustering on the truncated
singular value decomposition of the adjacency matrix.

The complexity of CFC is determined by the eigenvector calculation and
therefore is approximately O(n3).

An advantage of the applied approximation (using only k < R eigenvec-
tors) is the removal of noise in the data, as only the most distinctive features
are used in the merging process. In theory, this make the CFC method more
robust than the other two proposed methods which use all or at least most
of the network data.

Heuristic approximation

The CFC-algorithm needs to compute the meta-clustering for all k < R,
which is quite time consuming. Therefore some techniques from the related
statistical method Principal Component Analysis6 (PCA) are applied to this
Singular Value Decomposition (SVD) problem. The method applied in this
approximation builds on an automatic procedure to find the elbow point of
the scree plot (a plot of the decreasingly sorted eigenvalues, see Figure 4.7),
which is the point after which all eigenvalues are of approximately the same
size. In PCA, the elbow point correspond to the optimal number of principal
components to use.

To automate this process, we transform the detection of the knee point
into a Maximum Likelihood (ML) problem by following Ref. [58]. The esti-
mated optimal number, q̂, of eigenvectors (or principal components in PCA)
to include is given by

q̂ = max
k

lq(k), (4.3)

where k is the number of clusters and lq(k) is a profile log-likelihood function

lq(q) =

q∑
i=1

log f (di;µ1, σ̂(q)) +

n∑
j=q+1

log f (dj ;µ2, σ̂(q)) , (4.4)

6In PCA, we construct a new basis using uncorrelated linear combinations of the given
sample from some random variables. This maximizes the explained variance of the sample
and where each linear combination is orthogonal to the others. [21]

43

where di is the ith largest eigenvalue for a network of n nodes where f(·) is
the density function of the normal distribution N (d;µj , σ

2). The interpreta-
tion of (4.4) is that maximizing the log-likelihood the eigenvalues are divided
into two normal distributions with different means with µ1 > µ2. The first
distribution are the larger eigenvalues and the second distribution are all the
remaining eigenvalues which are of approximately equal size. The optimal
allocation of eigenvalues are given by maximizing (4.4) assuming that there
are enough eigenvalues to satisfy the assumption of the central limit theorem
(which is the case in this thesis as R ≥ 30, i.e. the common rule-of-thumb).

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scree plot

Sorted index

E
ig

en
va

lu
e

Figure 4.7: The scree plot of 150 eigenvalues from a cosine similarity matrix
constructed using 50 candidate clusters on the Karate network with pt = 0.5, see
Chapter 5 for details on the L-distribution. The filled circle indicate the estimated
set of possible number of eigenvectors as found by the approximation. This filled
triangle indicate the traditional elbow point in the scree plot. Note that this is
only done to limit the search as modularity maximization is used to determine the
optimal number of communities in the set of possible number of eigenvectors.

The mean value, µj is estimated by the sample mean and the variance,
σ2, by the pooled sample standard deviation

µ1 =
1

q

q∑
i=1

di, µ2 =
1

n− q

n∑
i=q+1

di, (4.5)

σ̂2 =
1

n− 2

[
(q − 1)s2

1 + (n− q − 1)s2
2

]
. (4.6)

This computation is simpler than determining the similarity and computing
the k-means partitioning for all k < R. The ML-method is used to narrow
the search, by limiting the set of possible number of eigenvectors to k ∈

44

{d(1/2)q̂e, . . . , d(3/2)q̂e}. This is smaller thanR, thus decreasing the number
of possible clustering solutions to calculate. [58]

4.4 Confidence level of communities

Using the data from the merging of candidate communities, we can find a
qualitative measure of the community structure. This is especially important
for the nodes that lie in the borderland between communities. Perhaps it is
equally likely that the node belongs to another neighboring community.

It is also important in structures similar to chains and tree in the net-
work, as discussed in Chapter 2.3.1. These nodes are naturally quite sensi-
tive to uncertain edges because they have few neighbors. Nodes having an
uncertain community membership can be found using the candidate com-
munities. If a node is found quite often in two different communities, the
confidence that it has been classified correctly is low as it is very sensitive
to the network structure.

4.4.1 Node-based Fusion of Communities

For the node-based method, the nodes are merged in a hierarchical manner,
the two first nodes are the most similar and for each merge the nodes get
more dissimilar. If a node was merged early into a community, it is less
likely that it would belong to another community.

Therefore a qualitative measure of the certainty that a node i belongs to
a community is found as bi = t−1

i where ti is the number of merges needed
before the node i is added to the community. A larger value of this score
indicates an early merge and therefore a more certain merge.

4.4.2 Community-based Fusion of Communities

For the community-based algorithm, the nodes are not merged in a hierarchi-
cal manner but a voting procedure is utilized after the k-means clustering.

Let ti = (tij) indicate the number of communities in the meta-community
j to which the node i belongs. Let t∗i = maxj(tij) be the maximum number of
times the node has been found in some meta-community, j∗. The belonging
score, bi, of node i is found as the fraction of the frequency of that the node
has belonged to meta-community, j∗, and the number of samplings, ns. A
correctly assigned node should be found in the same community with a large
frequency, i.e. often in the same meta-cluster. The belonging score, bi, is
found by

bi =
ti
ns
, (4.7)

which is normalized with all the belonging score of all other nodes, as b̄i =
bi [maxi(bi)]

−1, for i = 1, 2, . . . , n.

45

46

Chapter 5

Simulation experiments

In this chapter, we discuss methods used in the simulation experiments to
evaluate and test the proposed methods. The primary aim is to determine
how much certain information that is necessary in order to recover a sat-
isfactory community structure compared with the external labels. This is
accomplished by simulating edge existence probabilities and adding them
to a certain network structure, thus creating an uncertain network. The
certain networks can either be real-world networks or synthetic networks.

Recall that in a certain network all edges are known to exist with cer-
tainty, i.e. the existence probability Eij = 1 for edges between nodes i and j
in the network. In an uncertain network, the existence probability Eij 6= 1
for at least some edges between nodes i and j. An imperfect network has in
addition to uncertain edges, also missing or false edges in the network.

The generated uncertain and imperfect networks are used with the method
outlined in the previous chapter. The obtained solution is compared with the
external labels using validation methods. These labels indicate the correct
community structure of the network. Note that some community detection
methods are not able to obtain the same communities as specified by the
labels even in the certain network.

This chapter contain discussions on three different topics. (i) the test
networks used (both synthetic and real-world networks). (ii) the generation
of uncertainty with missing and false edges. (iii) evaluation and compari-
son of the obtained solutions, based on discussions in Chapters 2.1.3 and
2.3.2. Figure 5.1 contain a schematic outline of the proposed method and
its connection with the material in this chapter.

5.1 Test networks

To compare methods and evaluate them for use in practical applications,
both synthetic and real-world networks are used in the simulation experi-
ments. Synthetic networks allow for careful adjustment of network param-

47

Figure 5.1: The method used in the simulation experiments to evaluate and com-
pare the proposed methods for detecting communities in uncertain/imperfect net-
works.

48

eters. This enables the construction of networks with e.g. a certain degree
distribution or a specific mixing parameter (see definition below). This is an
advantage because it is difficult to find real-world networks with a certain
number of nodes or degree distribution.

The drawback with using synthetic networks is that these networks are
quite different from real-world networks, e.g. synthetic networks often have
a heterogeneous degree distribution and often have less triangles than their
real-world counter-parts. A mix of both network types is therefore required
to enable careful evaluation of the proposed methods.

5.1.1 Synthetic networks

The synthetic network model used in this thesis is adopted from Refs. [59,
60]. The authors have constructed algorithms to generate artificial networks
with community structures, which has become a standard benchmark for
community detection using synthetic networks. The networks are generated
using six different input parameters, shown in Table 5.1, together with the
values used in this thesis. These parameters allow for the generation of
families of networks with desired properties.

Variable Value Description
n 50 number of nodes in the network
k̄ 8 mean degree of each node

kmax 16 maximum degree
µ - mixing parameter
cmin 4 minimum size of a community
cmax 20 maximum size of a community
β 1 exponent of community size distribution

(typically 1 ≤ β ≤ 2 in real-world networks)
γ 2 exponent of degree distribution

(typically 2 ≤ γ ≤ 3 in real-world networks)

Table 5.1: The parameters used for generating synthetic networks in the simula-
tion studies using the algorithm from Ref. [59]. These parameters create networks
similar to Newman-Girvan benchmarks. The mixing parameter, µ, varies for each
synthetic network, see Table 5.2 for details. [39]

The mixing parameter, µ, is the fraction of edges between the different
communities and 1 − µ is the fraction of intra-community edges. A small
mixing parameter corresponds to well-separated communities, the extreme
is when µ = 0 and only disjoint communities exist. As µ increases, the com-
munities become more difficult to detect, until µ = 0.5 when no communities
exist in the network according to the adopted definition of a community in
Definition 3. The algorithm to generate the synthetic networks consists of
five different steps. A simplified version, see Ref. [59] for the full version, is
presented in Algorithm 7.

49

Algorithm 7 Generating synthetic networks with community structure
Firstly, generate the degree of each node by sampling from a power-law distribution
with parameter, γ, satisfying, k̄ and kmax. Secondly, generate the size of each
community from a power-law distribution with parameter, β, such that all nodes
are members of a community and the community sizes are consistent with the
parameters, cmin and cmax.

(i) using the configuration model, assign edges between all nodes such that the
degree of all nodes are satisfied,

(ii) randomly distribute the nodes to the communities in the network,

(iii) rewire the edges between nodes until the mixing parameter, µ is satisfied.

The drawback of this algorithm is the lack of triangles observed in real-
world social networks, which result in a sparser network than in empirically
found networks. The advantage is that synthetic networks enable the study
of how the mixing parameter is correlated with the effectiveness in finding
communities in uncertain networks. The algorithm has a linear complexity,
O(n), and can therefore be used to simulate large networks with community
structures that are consistent with real-world social networks. [59]

5.1.2 Real-world networks

The three real-world networks used are classics in network science and de-
scribe different types of networks: human friendships, football matches and
animal association networks. These networks all have a known community
structure which is supplied by external labels. The karate network describes
friendships between members of a karate club at a U.S. university in 1977.
The club fractured into two parts during the study and the resulting two
groups are the labels used for the external evaluation. The community
structure (the factions) is assumed possible to be recovered using a good
community detection algorithm. [61]

The football network contains all the Division IA college football teams
and the edges indicate games during the fall of 2000. The labels are the
conferences to which each team belongs and matches are most often played
between teams from the same conference. Therefore communities detected
in this network should indicate the different conferences. [39]

The last real-world network is the dolphin network which describes a
number of dolphins with frequent association. The labels are assigned using
observations of dolphin behavior, as members of a school signal the start
and finish of some travel by using side flopping and upside-down lobtailing.
Because only dolphins that are members of the school does this signaling, it
is possible to recover the real communities in the network. [62]

50

Karate network Dolphin network

Football network Synthetic 1 network

Synthetic 2 network Synthetic 3 network

Synthetic 4 network

Figure 5.2: The networks shown in Table 5.2 with the community structure as
given by external labels. The four synthetic networks are quite similar in appear-
ance but with varying diffuseness of the community structure.

51

5.1.3 Descriptive network statistics

We test the methods on seven networks with different characteristics in
hope to find some general rule-of-thumb when to use which method. These
networks are presented by their statistical properties in Table 5.2 and graph-
ically (with their community structure given by external labels) in Figure
5.2.

Name µ n m C Ref.
Karate 0.14 34 78 0.256 [61].
Dolphin 0.04 62 159 0.309 [62].
Football 0.36 115 613 0.407 [39].
Synthetic 1 0.20 50 193 0.266 [59].
Synthetic 2 0.30 50 200 0.280 [59].
Synthetic 3 0.40 50 180 0.224 [59].
Synthetic 4 0.50 50 207 0.173 [59].

Table 5.2: Benchmark networks to test the performance of the proposed methods
with n nodes, m edges, transitivity C, and mixing parameter µ. The transitivity is
calculated as fraction of the number of closed paths of length two (triangles) and
the number of paths of length two. Thus representing the number of paths with
length two that are triangles, this measure is often high for social networks. The
mixing parameter is the fraction of inter-community edges and the total number of
edges.

5.2 Generating uncertain networks

To generate uncertain networks, probabilities are simulated and assigned
to each edge in the synthetic and real-world networks. The probabilities
are simulated from two different distributions1: a discrete M-distribution,
M(x, pc), and the semi-discrete L-distribution L(x, pt). The distributions
are defined by the following probability distribution functions

fM(x) =

pc
2 , x = 0

1− pc, x = 1
2

pc
2 , x = 1

fL(x) =

1− pt, x ∈ [0, 1)
pt, x = 1
0, x /∈ [0, 1]

. (5.1)

The generated probabilities are arranged in an edge probability matrix,
E = [Eij], where Eij ∼M(x, pc) or Eij ∼ L(x, pt), for i, j = 1, 2, . . . , n.

The two distributions, shown in Figure 5.3, help us study two different
aspects of the efficiency in the proposed methods: (i) the case of missing

1Named after its rotated M-like shape when pc < 1/2 (actually the distribution is
W-shaped but named M-shaped to distinguish it from the Weibull-distribution) and the
rotated L-formed density function on the interval [a, b], where the total probability mass
in the tail is denoted Pt.

52

Figure 5.3: The density functions of the L-distribution with pt = 0.75 and M-
distribution using pc = 0.8.

links, and (ii) the case of the edge existence probability distribution. The
optimal algorithm should be quite insensitive to changes in pc, i.e. the mod-
ularity and diagnostic values (see below) should be independent of pc. An
optimal algorithm should also detect a good community structure at low
values of pt, i.e. networks with many uncertain edges.

The M-distribution is used to observe how well the communities are
detected when edges are missing. When pc = 0, all edges are included in the
network but they are uncertain with the probability, Eij = 1/2. Increasing
the probability of certainty, pc, increase the number of randomly removed
edges with the remaining edges treated as certain.

The L-distribution does not remove any edges from the network but
instead varies the number of edges that are certain versus uncertain. When
pt = 0, all edges are uncertain with some uniformly distributed existence
probability and increasing pt will generate more certain edges with Eij = 1.
The extreme is found at the point at pt = 1 where the original network is
recovered.

5.3 Generating imperfect networks

To investigate how the algorithms work on imperfect networks which also
have false edges (that do not exist in the real network), a noise term is
added into the adjacency matrix. A symmetric noise matrix, F = [Fij], is
generated with each element as a Bernoulli randomly distributed variable
Fij ∼ B(pn) with Fij = Fji and pn the noise factor i.e. the fraction of edges
added.

The noise matrix is added to the adjacency matrix element-wise, Ã =
A + F, adding elements which only add new edges. All non-zero elements
are treated equally as the network is not weighted, i.e. if the element is non-

53

zero indicate the existence of an edge. The network is sampled as in the
case for uncertain networks, described in Chapter 4.1, using Ã instead of A.
The M-distribution is used to generate the edge existence probabilities as
this randomly remove edges, i.e. introduce missing edges into the uncertain
network with false edges.

5.4 Evaluating community structures

The last and most important step is to evaluate the obtained solution, by
calculating a measure of the similarity between the solution found and the
optimal (correct) solution. This makes it possible to qualitatively rank the
different combinations of methods for different types of networks. Using this
approach with external information (e.g. labels) is often called supervised
evaluation and is used in this thesis to evaluate how the methods perform
with respect to the correct solution.

Figure 5.4: The community structure of the karate network [61] using external
information (found in the study) and the community structure detected by the
spin glass method [16].

An important remark is that most community detection algorithms do
not find the same solutions as indicated by labels, as demonstrated in Figure
5.4. Therefore, we apply another method called unsupervised evaluation to
compare the solution found on the imperfect network with the solution found
by the same community detection method applied on the certain network.
That is, we assume that the solution found by the community detection
method is the community structure in that specific network. Recall the dis-
cussion in Chapter 2.3.2, that it is difficult to validate community structures
and different methods generate different solutions.

5.4.1 Unsupervised evaluation

The first unsupervised method is comparison of modularity values with the
same method used on the certain version of the network. This measure has

54

the main drawback that modularity is ill-defined and it is not obvious what
the difference in modularity scales to. The problems include answers for
questions like: what is a large and small difference in modularity, and what
does this mean in terms of number of misplaced nodes.

Instead, we use two statistically based methods: the Mean Square Error
(MSE) and the correlation to compare two solutions. The MSE is often
used to compare estimated values to the true value and is also similar to the
measures of separation and cohesion, defined in Chapter 2.1.3.

Let the estimated community structure be represented by a neighbor
matrix, N̂ = [N̂ij], where N̂ij = 1 if nodes i and j are found in the same
community and 0 otherwise. Construct the corresponding matrix for the
assumed correct solution (from the community detection on the certain net-
works), N = [Nij]. The matrix version of MSE(N, N̂) is the mean of the
square root of MSE for each row

MSE(N, N̂) =
1

n

n∑
i=1

√√√√ 1

n

n∑
j=1

(
N̂ij −Nij

)2
. (5.2)

Note that the mean should be taken over n − 1 degrees of freedom but
when n is large the difference is minor but the resulting estimator is biased.

The matrix MSE estimates the differences of the matrices, thereby the
difference between the ideal (correct) and the obtained community structure.
The correlation is used to calculate a slightly different value, which indicate
how the rows in the matrices tend to be similar [20]. The mean correlation
ρ̄(N, N̂), between the two matrices, N and N̂ , is found as the mean of the
Pearson correlations, ρi, for each row

ρ̄(N, N̂) =
1

n

n∑
i=1

ρi(Ni, N̂i) =
1

n

n∑
i=1

Cov(Ni, N̂i)

V[Ni]V[N̂i]
, (5.3)

where V(·) denotes the variance. Using the covariance between each
element in each row and the expected value (mean) of the that specific row

Cov(Ni, N̂i) =
1

n

n∑
j=1

(Nij − E[Ni])(N̂ij − E[N̂i]), (5.4)

where E(·) denotes the expected value.

5.4.2 Supervised evaluation

Another way to compare clustering results is supervised evaluation, in which
some external correct solution is used. One method is based on the MSE and
correlation method introduced for unsupervised validation. The difference is
that the labels are used to create the ideal neighborhood matrix, N∗ = [N∗ij],

55

with N∗ij = 1 when li = lj but zero otherwise and N∗ii = 0, thus creating an
powerful supervised method.

Another method is to use the Normalized Mutual Information (NMI)
measure from information theory. The NMI-measure, Î(C,L), can be in-
terpreted as how much we know about the external labeling, L, given the
obtained solution, C, and vice versa.

Assume that L = {li} where li is the label of node i and the same for C
with the obtained community membership of node i. Further assume that
l and c are the realizations of some random variables, L and C, with some
(joint) probability distributions as

P(l, c) = P(L = l, C = c) =
|L ∩ C|
n

, (5.5)

P(l) = P(L = l) =
|{li ∈ L : li = l}|

n
, (5.6)

P(c) = P(C = c) =
|{ci ∈ C : ci = c}|

n
, (5.7)

where |{li ∈ L : li = l}| is the number of elements in L which equals the
label l with the corresponding for c, and n is the total number of nodes,
n = |L| = |C|. The mutual information, I(C,L), is defined by

I(C,L) =
∑
l

∑
c

P(c, l) log

(
P(c, l)

P(c)P(l)

)
, (5.8)

where the sums are taken over all assumed values of l and c, and log(·) is
the logarithm (with base 2). To normalize the mutual information, we need
to introduce the entropy, H(X), of a random variable X defined as

H(X) = −
∑
x

P(x) log (P(x)) . (5.9)

The expression for mutual information in (5.8) can be rewritten using the
expression for the entropy, H(X), in (5.9) above as

I(C,L) = H(C)−H(C|L). (5.10)

This can be used to show the relationship between entropy and mutual
information in a schematic form as in Figure 5.5.

The normalized mutual information, Î(C,L), between the obtained com-
munity structure, C, and the externally given labels, L, is

Î(C,L) = 2
I(C,L)

H(C) + H(L)
, (5.11)

which equals zero if the community structures are independent and unity
if they are equivalent. This measure accounts for the possibility that a

56

Figure 5.5: Schematic representation of the mutual information, I(X,Y), between
two random variables X and Y , entropy of the variable X, H(X), and, entropy of
the variable Y , H(Y). Adapted from Ref. [63].

combination of communities in e.g. the obtained solution may correspond
to one community in the information obtained by external labels.

This measure is superior to conventional methods like recall and precision
and has therefore become the general method for benchmarking community
detection algorithms. In this thesis, we therefore adopt this approach for
most evaluation, despite the existence of other simpler evaluation measures.
[64, 63]

57

58

Chapter 6

Results and discussion

In this chapter, we use simulation experiments to evaluate the methods
introduced in Chapter 4. This is performed using the methods discussed in
Chapter 5 for generation of imperfect networks and evaluation of merged
community structures.

The first part of this chapter is concerned with demonstrating how to
improve accuracy by merging multiple runs of the same community detection
algorithm. This is a cornerstone in the analysis of the imperfect networks, as
we need to merge the detected candidate communities. It is therefore fruitful
to analyze merging methods isolated from the statistical errors introduced
by sampling and by scrambling network data.

The merging method itself is also useful for other applications than an-
alyzing uncertain networks. Merging communities found by different com-
munity detection methods in the same network could result in a better
estimated community structure. As previously discussed, many community
detection methods and the modularity measure itself depend on parameters
which determine the size of communities found. Therefore, merging several
runs of a certain method using different parameters can be used to analyze
overlapping communities, robustness of the obtained structure and other
similar properties.

The second part of this chapter is concerned with testing the methods
to detect community structures in uncertain/imperfect networks. We begin
this part by a short recapitulation of the dependencies between the intro-
duced methods for sampling, community detection1 and merging2. The main
interest is demonstrating the possibility of detecting communities in net-

1In this chapter, we adopt the following abbreviations for the different community
detection methods used to detect the candidate communities: (EB) Divisive algorithm
based on betweenness, (GA) Greedy agglomerative method, (SM) Spectral method, (SP)
Spin glass algorithm, (WT) Random walk on networks, (LP) Label propagation.

2To merge the candidate communities, we apply the three proposed methods in this the-
sis: Two-step Fusion of Communities (TFC), Node-based Fusion of Communities (NFC)
and Community-based Fusion of Communities (CFC).

59

works estimated using incomplete information. An additional aim is finding
some guidelines regarding when to use a specific combination of community
detection and merging methods.

To evaluate the efficiency of the proposed methods, we use supervised
evaluation with Normalized Mutual Information (NMI) to compare the ob-
tained solution with the correct community structure specified by labels in
the data material. Two additional measure are also used: the matrix mean
square error (MSE) and the correlation between the neighborhood matrix
constructed from the obtained solution and the external label information.
These methods are all discussed in Chapter 5.

In the last part of this chapter, we offer a comparison between supervised
and unsupervised evaluation, as we often are forced to use the unsupervised
form when no external labels are available. We also show how it is possible
to obtain confidence levels for that a node belong to a specific community.

All graphs and statistical analysis are carried out using non-parametric
statistical methods. These include non-parametric regression analysis in
which we use the R-package np [56, 65] with the second-order Gaussian
kernel. Hypothesis testing and confidence bands are estimated using non-
parametric bootstrap methods. As the simulations are quite computationally
intensive, these methods offer a possibility to do statistical analysis when
the assumptions underlying the central limit theorem are not fulfilled. The
non-parametric regression method also allows for detecting non-linear rela-
tionships in the data.

Excellent introductions to these methods are given in Ref. [66], with
more advanced presentations of non-parametric regression in Refs. [67, 68]
and bootstrapping in Ref. [69].

6.1 Improving community detection by merging

One possible application for the proposed merging methods is to combine
the results of several different community detection methods or different
results from the same method. As previously discussed, we often have to
choose between fast or accurate methods and different methods favor dif-
ferent sizes of detected communities. By combining these solutions, we can
hopefully take advantage of the differences in the methods to find a better
solution. We have also discussed the problem with the resolution limit and
how different parameters in each community detection method influence it.
By varying these parameters and merging the results, we can detect com-
munity structures of different sizes to find communities within communities.

In this section, we present results from merging a number of runs by the
LP algorithm to demonstrate how the combination can be used to improve
performance. As discussed in Chapter 2.3, the LP algorithm is stochastic
and generates different results for each run on the same network. The result-

60

ing community structure from each run is regarded as a candidate network
and is merged using the three methods discussed in Chapter 5. The LP
algorithm is used to detect communities in the weighted constructed graph
in the TFC method.

We have applied the LP-algorithm to the three real-world networks found
in Table 5.2. In Figure 6.1, the normalized mutual information and corre-
lation (supervised) is shown for an increasing number of combined results
from the LP algorithm. Note that, these networks are certain and no weight
(edge existence probability) has been added onto the structure. We have
merely used the mean of 30 runs to eliminate any stochastic effects of the
combination step, especially in the TFC method using the LP algorithm.

The results in Figure 6.1 are summarized in Table 6.1 with some di-
agnostics of the obtained regression model. The regression is performed
using a non-parametric method with the second order Gaussian kernel and
Bootstrap methods to estimate the confidence bands and the p-value of the
regression significance test. The comparison is performed by examining the
estimated confidence band from the merged LP runs with the reference NMI
value from the SP algorithm. If the confidence band does not include the
reference value, found by the SP algorithm, we conclude that there is a
significant difference between the two methods.

We note that there are significant improvements for two of the networks:
karate and dolphin. The merged LP runs does not perform better on denser
networks as the football networks. As the karate and dolphin networks share
some characteristics (see below) it is expected that similar results should be
obtained on these networks.

Network Method bw p-value Compared with SP
karate NFC 2.57 0.01 Better

CFC 0.93 < 0.01 Better (with n > 8)
TFC 2.77 < 0.01 Better (with n > 8)

dolphin NFC 4.76 < 0.01 Better
CFC 0.46 < 0.01 Inconclusive
TFC 2.83 < 0.01 Better

football NFC 5.00 0.09 Worse
CFC 0.31 < 0.01 Worse
TFC 0.94 < 0.01 Worse

Table 6.1: The bandwidth, bw, p-value of the hypothesis test of significant re-
gression, and comparison with the Spin glass algorithm for the non-parametric
regression of the NMI values shown in Figure 6.1. The hypothesis test is performed
by bootstrap methods from Ref. [70]. The comparison is made by examination of
the bootstrapped 95% confidence intervals for the estimated NMI function and the
reference solution found by the SP algorithm, see text for details.

We can also conclude that the CFC method yields less varying results

61

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI karate

No. samples

N
M

I

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

No. samples

C
or

re
la

tio
n

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI dolphin

No. samples

N
M

I

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

No. samples

C
or

re
la

tio
n

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI football

No. samples

N
M

I

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

No. samples

C
or

re
la

tio
n

NFC
CFC
TFC

Ref. SP

Figure 6.1: The normalized mutual information and correlation of merged results
from the LP algorithm using TFC, NFC and CFC. The values are the mean of 30
runs in the karate, dolphin, and, football networks. The horizontal line indicates the
NMI and correlation of the community structure found by the Spin glass algorithm.
The curves are estimated using non-parametric regression with the Gaussian kernel.

62

as the bandwidth is smaller for this method, larger bandwidths indicate
larger smoothing (averaging) of the underlying data material. This is as
expected from the discussion in Chapter 4 that CFC uses a low-dimensional
approximation that effectively remove noise.

The results from the three different networks indicate that the TFC
method is best in general. However the TFC method is stochastic in this ex-
periment as it uses a second application of the LP algorithm on the weighted
network constructed from the frequency matrix. Individual runs of LP-TFC
perform worse or better as the indicated mean in Figure 6.1, which is cal-
culated from 30 runs of the merging method. In practical applications, we
should therefore refrain from using TFC as a deterministic outcome is pre-
ferred.

NFC is a good choice that yields results comparable with the Spin glass
algorithm and this at a lower complexity3, O(n2). This complexity is lower
than the complexity of the Spin glass algorithm, which is O(n3.2) for sparse
networks (see Chapter 2.4.4).

We conclude that it is possible to combine several results from the LP
algorithm to find a good estimate of the community structure in the three
real-world networks observed. The performance is equivalent to the Spin
glass algorithm but at a significant lower complexity. We also note that
this method could be used to merge4 the results from different community
detection methods.

6.2 Simple method for uncertain networks

A simple possible solution to the problem with uncertain edges is using a
community detection method that supports weighted graphs5. The edge
existence probability, Eij , is used as the weight for each edge and therefore
mimics the TFC and NFC method as it constructs a similar graph using an
estimated frequency matrix.

In this simpler case, we instead use the probabilities directly with the
interpretation that the probabilities indicate how probable it is that two
nodes are found in the same community. This is not entirely correct as the
probability in the uncertain graph in conjunction with the network structure
determines the communities. The probabilities given in the edge existence

3The complexity of the LP algorithm is O(m) and the hierarchical clustering in the
NFC method has complexity O(n2). Combining k results from the LP algorithm yields a
complexity of O(km+n2), which is simplified by knowing k < n and m < 1

2
n(n−1) < n2

to O(n2).
4A weighted version of this technique is possible, thus giving more importance to some

methods than others. One possibility is using the normalized modularity as a weight,
to give higher importance to community structures with higher modularity. As higher
modularity indicate a better community structure, this should be an natural extension.

5Four of the six methods presented in this thesis support weighted networks: SP, GA,
WT, and LP.

63

probability matrix only describe how probable it is that two nodes are linked
together, not that they are clustered together, compare the discussion in
Chapter 4.3.1. We begin by introducing a simulation study of this solution
and then discuss its implications and why the method is unsound.

To study the accuracy of this approximation, we apply the method on
the three different real-world networks presented in Table 5.2. In Figure
6.2, we present the detailed results regarding four different algorithms as
a mean of 50 different sets of probabilities. The results presented indicate
that this method is capable to recover some of the community structure in
the uncertain network. Denser networks with more edges and more clear
structure (as the football network) are more robust to uncertainty. However
useful results are also found when applying this method on more sparse
networks (karate and dolphin networks). The solutions found by the LP
algorithm in the dolphin and karate networks have the highest NMI and
correlation. In the football network, the SP algorithm finds community
structures with the highest values.

We note that none of the four algorithms managed to find the correct
network structure. This was expected as the probabilities used in conjunc-
tion with the weighted community detection are not the same as estimated
by the frequency matrix. Community structures are determined by more in-
formation than the edge existence probabilities. There are probably higher-
order structures within the network (triangles, paths, etc.) which create a
robustness for uncertainty. These structures are neglected in this approach
and would not work in practical applications. This was previously discussed
in Chapters 3 and 4.3.1.

The method only works in this case because the edge existence proba-
bilities have all been generated from the same distribution. Therefore the
expected edge existence probability, E[Eij] = E[E], i.e. is the same for all
edges. In practical applications, this would not hold and therefore this
method cannot find a good estimated community structure.

Finally, the approximation of using the edge probability matrix is lim-
iting our efforts in analyzing imperfect networks, as this method cannot
analyze uncertain nodes and randomly added false edges. Although a fast
method, it is not straight-forward to show that the approximation is valid
and when it does perform well.

6.3 General method for uncertain networks

In this section, we are interested in the performance of NFC and CFC on
different kinds of networks when using existence probabilities generated by
the L-distribution. This tells us how the amount of certain versus uncertain
edges are related to the performance and accuracy of the proposed methods.
By using this distribution, we can investigate how the performance depends

64

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI (karate)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI (dolphin)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NMI (football)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation

Ptail

C
or

re
la

tio
n

SP
GA
WT
LP

Figure 6.2: The normalized mutual information and correlation from using the SP,
GA, WT, and LP algorithms using the existence edge probabilities as weights. The
values are the mean of 50 uncertain networks generated using the L-distribution to
generate uncertain edges in real-world networks. The curves are estimated using
non-parametric regression with the Gaussian kernel.

65

on the mixing parameter, µ, in synthetic networks and the number of certain
versus uncertain edges, pt, in the simulated edge existence probabilities.
Each network is sampled ns = 50 times, generating as many candidate
networks and the results are based on the mean of 30 simulation runs.

We begin our investigation by using synthetic network structures with
different mixing parameters, ranging from 0.20 in Synthetic 1 (distinct com-
munity structure) to 0.50 (no community structure) in Synthetic 4. In Fig-
ures 6.3 and 6.4, we show the NMI and (supervised) correlation using CFC
and NFC to merge the candidate communities found in the synthetic net-
works.

We begin by concluding that the supervised correlation and NMI in many
cases yield equivalent results. This indicates that the simpler correlation
measure can be used instead of the more complex NMI, resulting in the
same conclusions. Continuing, we note that using NFC to merge candidate
networks perform as good as or better than using CFC. This is a good
result as NFC demands less computational effort than CFC, the complexity
is O(n2) (the complexity of a typical agglomerative hierarchical clustering
method) for the first and at least O(n3) for the latter (as the eigenvector
calculation is quite complex).

This result holds for both NMI and correlation and for all the synthetic
networks used. Further, we note that the LP algorithm often yields the best
results when used with the NFC method and the EB algorithm is the best
choice using the CFC method. As the EB algorithm has a higher complexity
than the LP algorithm, O(n3) versus O(m), we conclude that LP-NFC is
the better choice on synthetic networks6.

We also note that the performance of the community detection methods
decreases with increasing mixing parameter, µ. This effect has been ob-
served before in many papers benchmarking different community detection
methods on generated synthetic networks with varying mixing parameters.
In Ref. [64], this effect is documented in a wide range of different commu-
nity algorithms, the authors also use the same method to generate synthetic
networks as in this paper.

As the mixing parameter tends to 0.5, the community structure becomes
more vague and when µ = 0.5, there are as many edges between communities
as within them. This is approximately the same as saying that the network
does not have a community structure, however in Ref. [64] the authors claim
to find community structures in networks with µ = 0.75, but this violates
the definition of a community used in this thesis.

This is also the explanation for the poor performance of the LP algorithm
in Synthetic 4. As pt increases the NMI decreases for the LP-NFC method.
This does not change the fact that LP-NFC is the most preferable method.

6As the number of edges m is typically larger than the number of nodes n, but n2 is
often larger than m for sparse networks.

66

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 1 (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 1 (CFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 2 (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 2 (CFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 3 (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 3 (CFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 4 (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 4 (CFC)

Ptail

N
M

I

EB
GA
SM
SP
WT
LP

Figure 6.3: The normalized mutual information for the six different community
detection methods used in combination with NFC or CFC on four different synthetic
networks with the L-distribution. The curves are estimated using non-parametric
regression with the Gaussian kernel on the result of 30 runs each using 50 candidate
networks.

67

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 1 (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 1 (CFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 2 (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 2 (CFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 3 (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 3 (CFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 4 (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Synthetic 4 (CFC)

Ptail

C
or

re
la

tio
n

EB
GA
SM
SP
WT
LP

Figure 6.4: The correlation for the six different community detection methods
used in combination with NFC or CFC on four different synthetic networks with
the L-distribution. The curves are estimated using non-parametric regression with
the Gaussian kernel on the result of 30 runs each using 50 candidate networks.

68

As noted above, Synthetic 4 does not contain a community structure and it
is therefore desirable that the NMI score indicates this as well.

The shape of NMI and correlation curves are explained by that increasing
pt correspond to an increasing number of certain edges. As we approach
pt = 1, we recover the results found by applying the community detection
methods on the certain network. This is as expected and validates the
accuracy of the merging and sampling methods. The number of samplings,
ns, has a positive effect on the NMI and correlation values at all values
of pt. An increased number of samplings result in that the maximal NMI
and correlation is found at lower values of pt. With this we mean that
the curve attains its maximum plateau at a lower value of pt. To some
degree, we can therefore compensate the uncertainty in the network with
more candidate networks. Note that this works only to some extent and
we can never compensate for information loss by sampling more candidate
networks.

We now continue with some real-world networks: the karate, football,
and dolphin networks, in which we have added some edge existence probabil-
ities. In Figures 6.5 and 6.6, we show the NMI and (supervised) correlation
estimated by 30 simulation runs using 50 samplings in each run.

In these three networks, we observe the same trend as in the generated
synthetic network structures. The merging method NFC perform as good
as or better than CFC when using most community detection algorithms.
When using NFC to merge candidate communities, LP is the best choice
when observing both NMI and correlation. Using CFC, we get the best
results using the SP algorithm (for karate and football networks) and the
GA algorithm (for the dolphin network). As previously discussed SP and
GA have a higher complexity than the LP algorithm. Therefore, we conclude
that LP-NFC is the best choice in general with a low complexity as well as
the highest accuracy for the methods tested.

6.3.1 Why is LP-NFC the best method?

The reason for why LP algorithm performs well could be the stochastic na-
ture of the method which perturbs the community structure in each run.
It is probable that this creates more varied candidate communities, as each
perturbation induces small changes in the found communities. This leads to
better exploration of the space of possible communities structures. When
used in combination with NFC the small information loss counteracts the
perturbations, thus resulting in better modularity and quality of the de-
tected communities. This is similar to adding noise in e.g. bootstrap meth-
ods to generate smoother estimates of probability density functions (see Ref.
[69]). Thus the perturbations can be seen as noise which results in smoother
detected community structures.

69

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (CFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (NFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (CFC)

Ptail

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (NFC)

Ptail

N
M

I

EB
GA
SM
SP
WT
LP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (CFC)

Ptail

N
M

I

Figure 6.5: The normalized mutual information for the six different community de-
tection methods used in combination with NFC or CFC on three different real-world
networks with the L-distribution. The curves are estimated using non-parametric
regression with the Gaussian kernel on the result of 30 runs each using 50 candidate
networks.

70

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (CFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (NFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (CFC)

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (NFC)

Ptail

C
or

re
la

tio
n

EB
GA
SM
SP
WT
LP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (CFC)

Ptail

C
or

re
la

tio
n

Figure 6.6: The correlation for the six different community detection methods
used in combination with NFC or CFC on three different real-world networks with
the L-distribution. The curves are estimated using non-parametric regression with
the Gaussian kernel on the result of 30 runs each using 50 candidate networks.

71

6.3.2 Comparing real-world and synthetic networks

Finally, we compare the synthetic networks with the real-world networks
to find similarities in the NMI and correlation curves. Our hypothesis is
that there is a connection between some unknown network measure and the
resulting shape of the NMI and correlation functions. Firstly, we note that
the karate and dolphin networks have similarly shaped NMI and correlation
functions. The community detection methods for uncertain networks applied
on the karate network often find community structures with higher accuracy
than the same method find in the dolphin networks. The accuracy functions
for two real-world networks have quite similar appearance as for the network
Synthetic 3.

Secondly, the corresponding functions for the football network are quite
dissimilar to the karate and dolphin networks. However the network Syn-
thetic 2 has similar NMI and correlation functions as the football network.
We have found two distinct shapes of the accuracy functions and a corre-
spondence between synthetic and real-world networks regarding this shape.
There exists however no simple explanation for this, as the networks have
quite different mixing parameters and transitivity7, see Table 5.2. We have
therefore been unable to find an explanation for why these networks tend to
have the same accuracy. The reason probably lies in higher-order network
structures not captured by the network statistics.

6.4 General method for imperfect networks

This section is concerned with how the proposed methods perform in im-
perfect networks, found by adding missing and false edges in an uncertain
network. A good method for detecting communities in imperfect networks
should require only a small amount of certain information but also be able
to handle false and missing edges. In the previous part, we investigated the
relationship between performance and the amount of certain and uncertain
edges. We concluded that LP-NFC and SP-NFC are good choices which
generate the most accurate communities (of the tested methods) at a low
complexity. The complexity aspect is important as many social networks
are large and therefore we require fast methods that could be applied on
large networks with at least hundreds of nodes.

7Further simulation runs on more synthetic networks were conducted to determine
if there exists a relation between the transitivity and the effectiveness of the proposed
methods. This revealed nothing conclusive but indicated that a certain transitivity is
required to find the community structure with good accuracy. This was expected as
well as with the mixing parameter because a higher transitivity and a high fraction of
in-community edges create more distinct communities.

72

6.4.1 Uncertain networks with missing edges

We generalize the uncertain networks by allowing for missing edges using
edge existence probabilities generated using the M-distribution. In this case,
we are interested in how many edges that can be removed and still find an
accurate result. A good method should be insensitive to missing edges and
therefore have a flat NMI and correlation curve as functions of pc, the proba-
bility that an edge is certainly missing or included in the network. In Figure
6.7, we present the resulting NMI curves from a simulation run on three
real-world networks using NFC and CFC to merge candidate communities.

NFC merging results in that most community detection methods give the
same NMI value, in comparison with CFC where there is more spread be-
tween the different curves. Studying particular community detection meth-
ods, we see that SP and LP still are good choices in combination with the
NFC method. These methods also perform well using CFC to merge candi-
date clusters but still produce NMI scores lower than when using the NFC
method. Using the same arguments as before, we therefore conclude that
LP-NFC still is the best choice for detecting communities in uncertain net-
works.

We conclude by noting that the NMI scores are all quite low indicating
that the communities found are not the same as indicated by the external la-
bels. However, the problem with missing edges is a difficult problem in sparse
networks as there are not many edges to start with in this type of networks.
Removing these few edges clearly has a large impact on the community
structures found by the community detection methods. Denser networks, as
the football network, are more robust as there are many more edges between
nodes and therefore many more edges can be removed while preserving the
community structure. This is the explanation for the lower/unchanged NMI
scores compared with the previous results using the L-distribution.

6.4.2 Adding false edges

The last model of imperfect networks analyzed in this thesis is a model with
uncertain, false and missing edges. In this section, we study the accuracy of
community detection in imperfect networks using SP-NFC and LP-NFC on
the synthetic 1 and synthetic 2 networks. The methods have been chosen
because of their good performance in uncertain networks as well as in net-
works with missing edges. It is therefore more probable that these methods
also perform well in imperfect networks. The aim of this simulation exper-
iment is to study how robust the community detection is in relation to the
number of edges added and removed from the network.

The uncertain and missing edges are generated using the M-distribution
and the false edges are added using the noisy adjacency matrix discussed in
Chapter 5.3. The expected number of added false edges, Nf , by the noisy

73

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (NFC)

Pcert

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

karate (CFC)

Pcert

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (NFC)

Pcert

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

dolphin (CFC)

Pcert

N
M

I

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (NFC)

Pcert

N
M

I

EB
GA
SM
SP
WT
LP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

football (CFC)

Pcert

N
M

I

Figure 6.7: The normalized mutual information for the six different community de-
tection methods used in combination with NFC or CFC on three different real-world
networks with the M-distribution. The curves are estimated using non-parametric
regression with the Gaussian kernel on the result of 30 runs each using 50 candidate
networks.

74

adjacency matrix is given by

E[Nf] =
1

2
n (n− 1) pn, (6.1)

where pn is the noise factor or the probability to add an additional false edge
into the network. The noise factor assume values, pn ∈ {0, 0.01, 0.05, 0.10,
0.15, 0.20, 0.25} and the synthetic networks and the karate network have
approximately 50 nodes.

Therefore the expected number of noisy edges added in the uncertain
networks is E[Nf] ∈ {0, 12, 60, 120, 180, 240, 300}. Comparing with Table
5.2, a third of the edges are false in the synthetic networks at pn = 0.17
which is a considerable amount. As the M-distribution is used to remove
edges (real and falsely added), it is important to recall that the number of
edges removed varies between none (pc = 0) to half (pc = 1). This means
that at all values of pc and pn = 0.17, a third of the edges are falsely added
to the network.

In Figure 6.8, results are presented from 30 simulation runs on two differ-
ent networks using 30 candidate communities with the SP-NFC and LP-NFC
methods. The NMI are used for comparison between the different noise lev-
els and the probability of certainty, pc, which together control the number
of false and missing edges.

The LP-NFC method is better at low pn ≤ 0.05 for all different pc, at
higher pn the NMI values rapidly decrease to a very low level. SP-NFC
method is clearly better and more robust in the region with high pn. The
method generates NMI values almost constant over all values of pn, which
shows that it is not sensitive to false edges.

An interesting solution is to combine SP and LP in some manner to get
the good properties of LP in uncertain networks and of SP in imperfect
networks. We still recommend the LP-NFC method for most detections of
communities in uncertain and imperfect networks when not combining LP
and SP, due to the large difference in computational complexity.

A similar experiment using CFC instead of NFC generated worse results
than LP-NFC and has therefore not been presented in this chapter.

6.5 Unsupervised evaluation and confidence levels

In this final part, we present some minor results and discuss their implica-
tions in practical applications. Some natural complications when applying
the proposed methods are validation of the obtained solution and confidence
levels for the communities detected. Therefore some effort is needed to solve
or at least propose possible solutions to these problems in this thesis.

75

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NFC, pc: 0

Pnoise

N
M

I

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NFC, pc: 0.25

Pnoise

N
M

I

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NFC, pc: 0.5

Pnoise

N
M

I

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NFC, pc: 0.75

Pnoise

N
M

I

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NFC, pc: 1

Pnoise

N
M

I

SP−NFC (S1)
SP−NFC (S2)
LP−NFC (S1)
LP−NFC (S2)

Figure 6.8: The normalized mutual information for two different community de-
tection methods used in combination with NFC on two different synthetic networks
with the M-distribution. The curves are estimated using non-parametric regression
with the Gaussian kernel on the result of 30 runs each using 30 candidate networks.

6.5.1 Unsupervised evaluation

In this chapter, we have only used supervised evaluation since external labels
are available in the networks used. In real-world applications however it is
often difficult to find the correct solution to compare with, when constructing
and testing new methods. An alternative solution to supervised evaluation
is to use an unsupervised method by assigning node labels using something
other than external labels. One possible solution is to use the communities
detected by the same community detection algorithm on the certain network.
For example, if we are interested in evaluating the SP algorithm on some
network structure by generating existence probabilities, we could apply the

76

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Unsupervised

Ptail

C
or

re
la

tio
n

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Supervised

Ptail

C
or

re
la

tio
n

EB
GA
SM
SP
WT
LP

Figure 6.9: A comparison between the unsupervised and supervised correlation
for evaluating community detection methods. The unsupervised correlation is cal-
culated by estimating the external labels with the result obtained when applying
the community detection algorithm on the certain version of the network. The re-
sults are found using the NFC merging method on 30 runs each using 50 candidate
communities detected in the dolphin network with probabilities generated by the
L-distribution.

SP algorithm on the certain network before probabilities have been added,
then using the obtained solution as labels. A good method should be able to
detect a similar structure in uncertain/imperfect networks as when applied
on the certain network.

In Figure 6.9, we present a comparison between supervised and unsu-
pervised evaluation using the correlation measure. The underlying data is
produced by 30 simulation runs on the dolphin network with edge exis-
tence probabilities generated by the L-distribution. NFC merging is used to
combine 50 candidate communities detected in the uncertain network. The
resulting correlations are quite dissimilar as they answer different questions.
The supervised correlation measure was analyzed in Figure 6.6 where we
concluded that the LP method is the most promising on this type of net-
works. The LP method however does not perform well in the unsupervised
version as the method is stochastic and the combined communities from 30
runs are compared with only one run on the certain network.

However, the SP and SM algorithms converge to the same solution when
pt = 1 as found on the certain version of the network. The remaining
methods do not converge to the same solution and this is probably the
result of the information loss incurred by the NFC method. When using
the CFC method all methods, except the LP algorithm, converge to unity

77

LP−NFC with pt: 0.50 LP−NFC with pt: 1

Figure 6.10: An example of the six most uncertain nodes in the estimated commu-
nity structure in uncertain network. The LP-NFC method is used and combine 50
candidate communities. Some artifacts are visible in this example but neglecting
these, we find reasonable results.

correlation as the tail probability approaches unity.

We conclude that this type of evaluation sometimes is necessary even if
it is not as good as supervised validation and also answers a different kind
of question. Supervised evaluation compares the obtained solution with the
real solution, that may not be possible to find in the data given. Unsuper-
vised evaluation however compares the obtained solution using community
detection in uncertain networks with the result from using community de-
tection on the certain version of the network. If the method is known to
perform well on certain networks and yields high unsupervised correlation,
it is possible to conclude that the method also perform well on uncertain
networks.

6.5.2 Confidence level of communities

We end this chapter by demonstrating how to estimate confidence levels
for merged candidate communities, as discussed in Chapter 4.4. We have
merged 50 runs of the LP algorithm using the NFC method on the karate
network. In Figure 6.10, we present graphically the six nodes with the lowest
confidence using squares instead of circles to indicate the nodes.

Removing the obvious artifacts8 and we are left with a good approxima-
tion of the uncertain nodes. Especially note that the lower right corner in
each of the networks and that at pt = 0.5 it is indicated that there could
exist another partition inside the detected community.

8In the other simulations, we remove these artifacts but have not performed in this
example to show some problems that are the results of the merging methods. For example,
when calculating NMI, correlation, and MSE, we do not allow a node to be a member of
one community and all its neighbors another.

78

This method, however qualitative in nature, does help to detect uncer-
tain nodes that are placed in incorrect community. Thereby telling the
person doing the analysis that more evidence is needed regarding this node
to properly place it in a community. Finally note that when using the CFC
method, we can find these confidence levels in a more quantitative manner
as voting is used to place the nodes in the correct meta-cluster.

79

80

Chapter 7

Concluding Remarks

In this thesis, we have proposed a framework to analyze community struc-
tures in imperfect network data. As a part of this, a sampling method has
been adopted to sample candidate networks from the ensemble of networks
consistent with the uncertain information. The major innovations are the
three proposed methods to merge the community structures found in the
candidate networks. The methods are based on previous work in ensem-
ble clustering and community detection. The introduced methods to merge
communities are believed to have many applications in network related areas
and is an important future area of research.

Summary and implications We have demonstrated that the merg-
ing methods introduced are able to greatly improve the performance of the
label propagation algorithm. Using node-based fusion of communities to
merge a few runs of the algorithm, results in an accuracy comparable to
the more advanced spin glass algorithm at a much lower complexity. Merg-
ing methods are therefore a possibility for developing faster, more robust,
and/or more accurate methods for community detection by combining dif-
ferent structures.

Faster and more accurate methods can be developed by merging the re-
sults from several different community detection methods or using the same
method with different parameters. By varying parameters in the commu-
nity detection algorithm and merging the resulting community structures,
it is possible to find overlapping communities on many different scales and
allowing for a better understanding of network properties. Using merging
in combination with bootstrap re-sampling, outlined in Ref. [12], is one pos-
sible method to develop methods to calculate the robustness of community
structures.

Another application of merging community structures are in imperfect
and uncertain networks. To study these networks, we sample from an ensem-
ble of networks consistent with the provided imperfect network information.
We have evaluated the proposed merging methods used in conjuncture with

81

six different community detection methods. This include the results from
three larger simulation studies on both real-world and generated synthetic
networks. Existence probabilities have been simulated using two different
distributions to evaluate the accuracy in detecting community structures in
uncertain and imperfect networks.

Results indicate that the framework is able to recover the community
structures of the test networks when half of the edges are known with cer-
tainty. The network structure largely influences the performance of the
methods to find communities in imperfect network. However, Label Prop-
agation (LP) used in combination with Node-based Fusion of Communities
(NFC) is the most promising method and often performs well on the test
networks. The LP-NFC method has been shown to be quite robust to miss-
ing edges but sensitive to false edges. It is the best candidate for community
detection in imperfect networks. We have demonstrated how the framework
can be used to adequately detect community structures with uncertain, in-
complete and conflicting network data. It is stressed that these methods
should be used to test hypotheses about the community structure together
with a human supervisor, as some artifacts are bound to emerge when merg-
ing many different candidate communities.

Finally, we have demonstrated the possibility to evaluate the framework
using networks without external labels. A method for finding confidence lev-
els of the hypothesis that a certain node belongs to a certain community has
also been implemented and discussed. This completes the framework sup-
porting the detection of communities in imperfect networks from gathered
data to the most probable community structure with confidence levels.

Future work Possible further research into the subjects discussed in this
thesis include examining the methods using more and larger networks with
more samplings. This to verify the results and conclusions given in this thesis
on a broader spectrum of network types. Other important further studies are
how the limit value (at which LP-NFC crosses SP-NFC in the NMI-graph)
of pn varies given the network structure. Another further development is
to include the possibility of uncertain nodes and graph structures, where
a probability for their existence is given in the same manner as for edges.
These generalizations have natural applications in social network analysis
but also in other network formalisms. The framework can handle these
generalizations with smaller modifications of the sampling step.

Moreover, other methods for merging candidate communities can be de-
veloped using Hybrid Bipartite Graph Formulation [15] and Markov Clus-
tering Algorithm (MCL) [3]. Some newer community detection methods
using Infomaps [71] and clique percolation [72] show much promise as accu-
rate and fast methods. Therefore, some effort should be given to evaluate
these methods using the framework introduced. Other methods for sam-
pling from probability intervals, using Markov Chain Monte Carlo, are also
possible future extensions of this thesis.

82

Bibliography

[1] Stanley Wasserman and Katherine Faust. Social network analysis : methods and
applications. Structural analysis in the social sciences, 8. Cambridge University Press,
1 edition, November 1994. 1, 2, 89, 95, 96

[2] John P. Scott. Social Network Analysis: A Handbook. SAGE Publications, January
2000. 1

[3] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174,
February 2010. 1, 2, 3, 13, 15, 16, 19, 21, 22, 82, 89

[4] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Communities in Net-
works. September 2009. 1, 15, 16

[5] Mark Newman. Networks: An Introduction. Oxford University Press, USA, 1 edition,
May 2010. 1, 15, 16, 19, 89, 91, 93, 95, 96

[6] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826, June
2002. 1

[7] Robert S. Weiss and Eugene Jacobson. A method for the analysis of the structure of
complex organizations. American Sociological Review, 20(6), December 1955. 2

[8] Stuart A. Rice. The Identification of Blocs in Small Politicial Bodies. The American
Political Science Review, 21(3), August 1927. 2

[9] M. E. J. Newman. Scientific collaboration networks. I. Network construction and
fundamental results. Physical Review E, 64(1):016131+, June 2001. 2

[10] M. E. J. Newman. Scientific collaboration networks. II. Shortest paths, weighted
networks, and centrality. Physical Review E, 64(1):016132+, June 2001. 2

[11] Usha N. Raghavan, Réka Albert, and Soundar Kumara. Near linear time algo-
rithm to detect community structures in large-scale networks. Physical Review E,
76(3):036106+, September 2007. 3, 4, 22

[12] Martin Rosvall and Carl T. Bergstrom. Mapping Change in Large Networks. PLoS
ONE, 5(1):e8694+, January 2010. 3, 14, 81

[13] A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for
combining multiple partitions. Journal of Machine Learning Research, 3:583–617,
March 2003. 3, 9

[14] Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus Cluster-
ing: A Resampling-Based Method for Class Discovery and Visualization of Gene
Expression Microarray Data. Machine Learning, 52(1):91–118, July 2003. 3, 9, 41

[15] Xiaoli Z. Fern and Carla E. Brodley. Solving cluster ensemble problems by bipartite
graph partitioning. In ICML ’04: Proceedings of the twenty-first international con-
ference on Machine learning, pages 36+, New York, NY, USA, 2004. ACM. 3, 9, 10,
41, 82, 91

83

[16] J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. Phys
Rev E Stat Nonlin Soft Matter Phys, 74(1 Pt 2), July 2006. 4, 20, 21, 54

[17] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification (2nd
Edition). Wiley-Interscience, 2 edition, November 2001. 6

[18] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison Wesley, us ed edition, May 2005. 6, 7, 8, 9

[19] David Skillicorn. Understanding Complex Datasets: Data Mining with Matrix De-
compositions (Chapman & Hall/Crc Data Mining and Knowledge Discovery Series).
Chapman & Hall/CRC, May 2007. 6, 92, 94

[20] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988. 6, 8, 9, 55

[21] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis
(6th Edition). Prentice Hall, April 2007. 7, 8, 43

[22] J. B. MacQueen. Some Methods for Classification and Analysis of MultiVariate
Observations. In Le M. L. Cam and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.
University of California Press, 1967. 8

[23] Sandrine Dudoit and Jane Fridlyand. Bagging to improve the accuracy of a clustering
procedure. Bioinformatics (Oxford, England), 19(9):1090–1099, June 2003. 9

[24] Vikas Singh, Lopamudra Mukherjee, Jiming Peng, and Jinhui Xu. Ensemble cluster-
ing using semidefinite programming with applications. Machine Learning, December
2009. 9

[25] Xiaoli Z. Fern and Carla E. Brodley. Random Projection for High Dimensional Data
Clustering: A Cluster Ensemble Approach. In Proc. 20th International Conference
on Machine Learning (ICML’03), Washington, August 2003. 9

[26] Ana L. N. Fred and Anil K. Jain. Data Clustering Using Evidence Accumulation.
Pattern Recognition, International Conference on, 4:40276+, 2002. 9

[27] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with Qual-
itative Information. In FOCS ’03: Proceedings of the 44th Annual IEEE Symposium
on Foundations of Computer Science, pages 524+, Washington, DC, USA, 2003.
IEEE Computer Society. 9

[28] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsistent infor-
mation: Ranking and clustering. J. ACM, 55(5):1–27, November 2008. 9

[29] N. Bansal, A. Blum, and S. Chawla. Correlation clustering, 2002. 9

[30] Paul Jaccard. Étude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–
579, 1901. 10

[31] Gerard Salton. Automatic Text Processing: The Transformation Analysis and Re-
trieval of Information by Computer (Addison-Wesley series in computer science).
Addison-Wesley Pub (Sd), 1988. 10

[32] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. February 2004.
12, 17

[33] M. E. J. Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, June 2006. 14

[34] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski, and D. Wag-
ner. Maximizing Modularity is hard. August 2006. 15

84

[35] Benjamin H. Good, Yves A. de Montjoye, and Aaron Clauset. Performance of mod-
ularity maximization in practical contexts. Physical Review E, 81(4):046106+, April
2010. 15

[36] Santo Fortunato and Marc Barthélemy. Resolution limit in community detection.
Proceedings of the National Academy of Sciences, 104(1):36–41, January 2007. 15

[37] Martin Rosvall and Carl T. Bergstrom. An information-theoretic framework for
resolving community structure in complex networks. Proceedings of the National
Academy of Sciences, 104(18):7327–7331, May 2007. 15

[38] Jake M. Hofman and Chris H. Wiggins. Bayesian Approach to Network Modularity.
Physical Review Letters, 100(25):258701+, June 2008. 15

[39] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in
networks. Physical Review E, 69(2):026113+, February 2004. 17, 49, 50, 52

[40] Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman. Email as spec-
troscopy: automated discovery of community structure within organizations, pages
81–96. Kluwer, B.V., Deventer, The Netherlands, 2003. 17

[41] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding community struc-
ture in very large networks. Physical Review E, 70(6):066111+, December 2004. 18

[42] Ken Wakita and Toshiyuki Tsurumi. Finding community structure in mega-scale
social networks: [extended abstract]. In WWW ’07: Proceedings of the 16th interna-
tional conference on World Wide Web, pages 1275–1276, New York, NY, USA, 2007.
ACM. 18

[43] Philipp Schuetz and Amedeo Caflisch. Multistep greedy algorithm identifies com-
munity structure in real-world and computer-generated networks. September 2008.
18

[44] M. E. J. Newman. Finding community structure in networks using the eigenvectors
of matrices. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics),
74(3):036104+, 2006. 19, 91

[45] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A
Hadrons and Nuclei, 31(1):253–258, February 1925. 19

[46] Renfrey B. Potts. Some Generalized Order-Disorder Transformation. In Transforma-
tions, Proceedings of the Cambridge Philosophical Society, volume 48, pages 106–109,
1952. 19

[47] F. Y. Wu. The Potts model. Reviews of Modern Physics, 54(1):235–268, January
1982. 19

[48] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983. 20, 21

[49] Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer-
Verlag, 1 edition, August 1999. 20, 21

[50] Pascal Pons and Matthieu Latapy. Computing Communities in Large Networks Using
Random Walks. In pInar Yolum, Tunga Güngör, Fikret Gürgen, and Can Özturan,
editors, Computer and Information Sciences - ISCIS 2005, volume 3733, chapter 31,
pages 284–293. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. 21

[51] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical structure and
the prediction of missing links in networks. Nature, 453(7191):98–101, May 2008. 25

[52] David Easley and Jon Kleinberg. Networks, crowds, and markets : reasoning about
a highly connected world. Cambridge University Press, July 2010. 27

[53] Éloi Bossé, Jean Roy, and Steve Wark. Concepts, Models, and Tools for Information
Fusion. Artech House, Inc., first edition, 2007. 27, 28, 29, 32

85

[54] J. M. Bernardo and Adrian Smith. Bayesian Theory (Wiley Series in Probability and
Statistics). Wiley, 1 edition, March 2000. 28

[55] G. Shafer. A mathematical theory of evidence. Princeton university press Princeton,
NJ, 1976. 28, 29, 30

[56] R Development Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, 2009. 38, 60

[57] Gabor Csardi and Tamas Nepusz. The igraph Software Package for Complex Network
Research. InterJournal, Complex Systems:1695, 2006. 38

[58] Mu Zhu and Ali Ghodsi. Automatic dimensionality selection from the scree plot
via the use of profile likelihood. Computational Statistics & Data Analysis, pages
918–930, 2006. 43, 45

[59] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community de-
tection algorithms on directed and weighted graphs with overlapping communities.
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 80(1):016118+,
2009. 49, 50, 52

[60] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for
testing community detection algorithms. Physical Review E (Statistical, Nonlinear,
and Soft Matter Physics), 78(4), 2008. 49

[61] W. W. Zachary. An information flow model for conflict and fission in small groups.
Journal of Anthropological Research, 33:452–473, 1977. 50, 52, 54

[62] David Lusseau, Karsten Schneider, Oliver J. Boisseau, Patti Haase, Elisabeth
Slooten, and Steve M. Dawson. The bottlenose dolphin community of Doubtful
Sound features a large proportion of long-lasting associations. Behavioral Ecology
and Sociobiology, 54(4):396–405, 2003. 50, 52, 95, 96

[63] David J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, 1st edition, October 2003. 57

[64] Andrea Lancichinetti and Santo Fortunato. Community detection algorithms: A
comparative analysis. Physical Review E, 80(5):056117+, November 2009. 57, 66

[65] Tristen Hayfield and Jeffrey S. Racine. Nonparametric Econometrics: The np Pack-
age. Journal of Statistical Software, 27, 2008. 60

[66] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference
(Springer Texts in Statistics). Springer, December 2003. 60

[67] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statistics).
Springer, May 2007. 60

[68] W. Härdle. Applied Nonparametric Regression. E-book:
http://www.quantlet.com/mdstat/scripts/anr/pdf/anrpdf.pdf. 60

[69] A. C. Davison and D. V. Hinkley. Bootstrap Methods and Their Application (Cam-
bridge Series in Statistical and Probabilistic Mathematics , No 1). Cambridge Uni-
versity Press, 1 edition, October 1997. 60, 69

[70] Jeff Racine. Consistent Significance Testing for Nonparametric Regression. Journal
of Business and Economic Statistics, 15:369–378, 1997. 61

[71] Martin Rosvall and Carl T. Bergstrom. Maps of random walks on complex net-
works reveal community structure. Proceedings of the National Academy of Sciences,
105(4):1118–1123, January 2008. 82, 94

[72] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the over-
lapping community structure of complex networks in nature and society. Nature,
435(7043):814–818, June 2005. 82

86

[73] Douglas B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall, 2
edition, September 2000. 89, 93

[74] U. Brandes and T. Erlebach. Network Analysis : Methodological Foundations (Lecture
Notes in Computer Science). Springer, March 2005. 89, 96, 97

[75] Eric D. Kolaczyk. Statistical Analysis of Network Data: Methods and Models
(Springer Series in Statistics). Springer, 1 edition, March 2009. 89, 94, 97

[76] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman,
first edition edition, January 1979. 91

[77] David A. Grossman and Ophir Frieder. Information Retrieval: Algorithms and
Heuristics (The Information Retrieval Series)(2nd Edition). Springer, 2nd edition,
December 2004. 92

[78] Charles. Spectral Partitioning: The More Eigenvectors, The Better. In Design
Automation, 1995. DAC ’95. 32nd Conference on, pages 195–200, 1995. 92

[79] A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: Analysis and an algo-
rithm. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural
Information Processing Systems, pages 849–856. MIT Press, 2001. 92

[80] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1):31–42,
January 1976. 93

[81] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,
New York, NY, USA, 1971. ACM. 93

[82] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, December 1959. 93

[83] M. E. J. Newman. A measure of betweenness centrality based on random walks.
Social networks, 27(1):39–54, January 2005. 94

[84] Geoffrey R. Grimmett and David R. Stirzaker. Probability and Random Processes.
Oxford University Press, USA, 3 edition, August 2001. 94

[85] M. E. J. Newman and Juyong Park. Why social networks are different from other
types of networks. May 2003. 95

[86] M. E. J. Newman. Analysis of weighted networks. July 2004. 95

[87] Tore Opsahl, Filip Agneessens, and John Skvoretz. Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks, 32(3):245–251,
July 2010. 95

[88] L. Freeman. Centrality in social networks conceptual clarification. Social Networks,
1(3):215–239, 1979. 95, 97

[89] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603,
December 1966. 96

[90] Phillip Bonacich. Power and Centrality: A Family of Measures. The American
Journal of Sociology, 92(5):1170–1182, 1987. 97

87

88

Appendix A

Graph theory

Networks are analyzed by the use of the mathematical theory of graphs. In
this section some elementary results from graph theory and linear algebra
are reviewed. These methods are used in combination with the network
methods presented in the next appendix and with the methods presented in
the background on clustering and community detection in Chapter 2.

For a more extensive discussion of graph theory see Ref. [73], for more
on graph theory in connection with social network analysis see e.g. Refs.
[1, 74, 5, 3, 75].

A.1 Elementary graph theory

A graph is defined as an object G = (V,E) consisting of a node (vertex)
set V (G) and an edge (link) set E(G). The number of nodes, n, is equal
to the size of the node set, n = |V |, and the number of edges, m, in the
network is similarly m = |E|. Two nodes are said to be adjacent, neighbors,
or connected if there exist an edge between them. If all k nodes in the graph
are adjacent, the graph is said to be k-complete. A graph is simple, i.e.
loop-less and lacks multiple edges, if there is at most one edge between each
pair of nodes and no node is neighbor with itself.

Figure A.1: Visualizations for three well-known graph(structures); (a) a 4-
complete graph, (b) a tree, and (c) the Petersen graph.

A walk is an ordered set of alternating nodes and edges that starts in one
node i and ends in another node j. If the walk only transverses each node

89

at most once, it is called a path. A k-cycle is a path where the first and last
nodes are the same, and the path contains k edges. A graph is connected,
if there exists a path between any given pair of nodes. The shortest path
between two nodes is the geodesic and the longest geodesic is the diameter
of the graph.

A graph without cycles is called a tree (or a forest if unconnected). A
subgraph, G′, of a graph G contains all edges that connect a subset of the
node set, i.e. V ′(G) ⊂ V (G) such that E′(G) ⊂ E(G) contains all edges
connecting the nodes in V ′(G). One says that the edge set is spanned by
the set of nodes. Two subgraphs are therefore disjoint and not connected.
A k-clique is a k-complete subgraph.

A.2 Algebraic graph theory

The adjacency matrix, A = [Aij], is often used to represent a graph. Here
Aij = 1 denotes the existence of an edge between nodes i and j, otherwise
Aij = 0 if no edge exist. An adjacency matrix is always symmetric with
a zero-diagonal for simple graphs. The adjacency matrices for two of the
graphs presented in Figure A.1 are

Aa =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , Ab =

0 1 1 0 0 0 0
1 0 0 1 1 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

.

Extending the adjacency matrix, a weighted graph is defined by using Aij
as the weight of the edge between nodes i and j. If there is no edge between
the two nodes Aij = 0 as before. The simplest analogy for a weighted graph
is that the weight is some kind of cost or distance. Edges with large weights
should be avoided if possible, to minimize the total cost or length of crossing.

The degree of a node, ki, is the total number of edges that are connected
to the node i and the density, ρ, the mean degree of a graph is defined as

ki =

n∑
j=1

Aij , ρ =
1
n

∑n
i=1 ki

n− 1
=

1
n

∑n
i=1

∑n
j=1Aij

n− 1
, (A.1)

where Aij is the element in row i, column j in the adjacency matrix and
n is the number of nodes in the graph.

The Laplacian matrix of a graph is defined as

90

Lij =

ki for i = j
−1 for i 6= j and Aij 6= 0
0 otherwise

, (A.2)

or equivalently Lij = kiδij − Aij , where δij is the Kronecker delta func-
tion. Since both the adjacency matrix and the Laplacian matrix are sym-
metric, results from standard linear algebra state that the eigenvalues are
real and it is also possible to show that they are non-negative, λi ≥ 0. This
result is used in the community detection method proposed in Ref. [44],
which is discussed in detail in Section 2.4.3. [5]

A.3 Spectral graph partitioning

The graph partitioning problem is concerned with how to divide a graph,
G = (V,W), into k disjoint partitions (or parts) by finding a cut set that
minimizes the sum of weights of cut edges. The cut set is the set of edges
that if removed results in the k components corresponding to the partitions
of the graph.

Let W = [Wij] denote a n×n-similarity matrix and P = {P1, P2, . . . , Pk}
denote the partitions of the nodes, i.e.

⋃k
i Pi = V . The sum of the weights

of the required cut of partition is cut(P,W) =
∑
Wij , where nodes i and j

do not belong to the same cluster.

There are several methods to find the cut set of edges that minimizes
the total cut, but the problem in general1 is NP-complete and is therefore
time consuming to solve. An estimate of the cut set can be found by using
a result from linear algebra called an eigendecomposition on the adjacency
matrix of the graph. [15]

Eigendecomposition is a special case of a more general result the Singular
Value Decomposition (SVD), which is presented in Theorem 3. The SVD is
a change of coordinates from the original basis to a basis comprised by the
eigenvectors of the matrix. The square root of the eigenvalues are the new
coordinates corresponding to the new basis.

Theorem 3 (Singular Value Decomposition). Any m× n-matrix X can be
factored into

X = Q1ΣQ2, (A.3)

where the columns of Q1 are the eigenvectors of XX> and the columns of
Q2 are eigenvectors of X>X. The r singular values on the diagonal of Σ
are the square roots of the non-zero eigenvalues of both XX> and X>X.

The theorem states that a matrix can be decomposed by the following
sum

1When ki=2, the problem is solved in polynomial time by matching. [76]

91

X = Q1ΣQ2 =

r∑
i=1

urσrv
>
r , (A.4)

and as the eigenvalues, σi, are sorted the terms are decreasing. A natural
approximation to the value of the matrix X is therefore found by truncating
the sum in (A.4) at some k < r, i.e. only using the k eigenvectors associated
with the k largest eigenvalues. [77]

The adjacency and Laplacian matrices are positive definite, i.e. they have
positive eigenvalues, and this simplifies the expression in (A.3) to a special
case which is the slightly simpler eigendecomposition. This method is used
on sparse square adjacency or similarity matrices, X, by using the following
expression

X = PΛP−1, (A.5)

where P is a matrix with orthogonal eigenvector as columns and Λ is a
matrix with eigenvalues as the diagonal. As before the expression can be
expanded to a similar form to (A.4). Using the approximation by truncating
the series at some k < r, i.e. using the first k eigenvectors, the matrix is
approximated by a low-dimensional representation. [19]

Using this method on a similarity matrix, results in an approximation
matrix which can be used in clustering, e.g. by using the Fiedler2 vector,
k-means clustering or eigenvector clustering. [19, 78]

When partitioning graphs, the adjacency matrix is instead approximated
by SVD or eigendecomposition. It turns out that one can find a good graph
partitioning by using the second largest eigenvector in the Laplacian matrix.
This will define the semi-optimal cut and thereby relaxing the NP-hard
discrete graph partitioning problem (see below for details). In Ref. [78], the
authors discuss the problem and found that using more than one eigenvector
is better. In this paper, the approach from Ref. [78], using k eigenvectors (as
many eigenvectors as partitions), is used to partition networks (see Chapters
2.2 and 4.3 for details). [79]

A.4 Common problems related to graphs

This short review of graph theory is concluded by discussing some common
graph related problems and algorithms.

2The eigenvector corresponding to the second smallest eigenvalue of the Laplacian
matrix, is called the Fielder vector. This method is used by sorting the elements of the
Fiedler vector and separating them into two parts, at some arbitrary point, e.g. zero. The
row numbers corresponding to each element in the cluster sets are then the nodes that are
members of the cluster.

92

A.4.1 Maximum common subgraph

The maximum common subgraph of two graphs, G and H, is often used to
find how similar two graphs are. That is a subgraph of both G and H with
the maximum number of nodes. The standard algorithm for this problem is
subgraph isomorphism detection presented in Ref. [80]. An isomorphism is
bijection f : V (G) → V (H), where G and H are simple graphs, such that
ij ∈ E(G) if and only if f(i)f(j) ∈ E(H). This problem is difficult to solve
for most problems and requires a large amount of computations, one can
show that this problem is NP-complete. [81]

A.4.2 Kernighan-Lin graph partitioning

Graph partitioning problems are also common in the fields of mathematics
and computer science. The simplest possible graph partitioning problem is
the bisection of a graph, i.e. dividing it into two groups such that the edges
between the groups are as few as possible. The most well-known method
to solve this problem is the Kernighan-Lin algorithm which is based on five
steps outlined in Algorithm 8.

Algorithm 8 Kernighan-Lin

(i) randomly divide the nodes into two groups,

(ii) calculate how the cut size would change if two nodes i and j where inter-
changed, for each pair of nodes i and j,

(iii) interchange the two nodes that corresponds to the largest reduction or smallest
increase of the cut size,

(iv) repeating (ii) with the restriction that a node can only be moved once, until
all nodes have been moved,

(v) when all nodes have been moved once, rerun the algorithm using the grouping
with the smallest cut size generated in (iii).

The drawback with this algorithm is its high complexity, O(n4), and
that is does not always generate the optimal division of the graph. [5]

A.4.3 Shortest path

Another common problem is to find the shortest path between two points,
which is encountered in calculations of the geodesic and the diameter of a
graph. The most used algorithm to find the shortest path is the greedy
Dijkstra’s algorithm. Which is both of low complexity and find the optimal
path for most graphs. [82, 73, 5]

93

A.4.4 Random walk on graphs

A random walk is a simple stochastic process (Markov Chain) on a chain
(a kind of walk). On a graph the situation is complicated with nodes that
have different degrees. Using a weighted network, the surfer/walker would
like to use the edges with the smallest (or largest) weight more often than
others. One can show that the transition matrix of this Markov Chain is the
adjacency matrix of the graph. Using standard techniques from the study
of stochastic processes, the stationary probabilities, and other interesting
quantiles are simple to calculate.

For more information on random walks see Refs. [19, 75, 71, 83] and
Markov Chains, see e.g. Ref. [84].

94

Appendix B

Social Network Analysis

Social Network Analysis (SNA) is the combination of work carried out in
many different sciences during the last century. Some results originate from
sociology, psychology, physics and mathematics. Social networks differs from
complex networks in general by their intricate clustering structure (social
communities) and their positive correlation between the degrees of adjacent
nodes. The first difference is the main topic of this thesis and is discussed in
more detail in Chapter 2.3. The meaning of the second is that nodes with
high degree often have high degree neighbor nodes. [85]

Important research questions in SNA includes the flow of information
on the network structure, finding leaders and authority figures, finding the
clustering (community) structure of the network and modeling its dynamic
behavior. Visualizing a large Social Network (SN) is a very challenging
task, therefore some quantifiable measures are needed to describe the net-
work structure. One example of such measures are centrality measures which
can be applied on a node or edge and for the entire network. Generalized
measures for weighted graphs also exist see e.g. Refs. [86, 87]. The most
common centrality measures in community detection methods are the Close-
ness, Betweenness and Eigenvector centrality. [88, 1, 5]

Example 9. A comparison of the three measures is presented above, in Fig-
ure B.1. The network is composed of 62 dolphins, living off Doubtful Sound,
New Zealand, which shares an edge if they have some frequent association
with each other. The node degree, the closeness centrality, the betweenness
centrality, and the eigenvalue centrality are presented for the same network
for comparing the different measures. [62]

The node degree is higher in the center of the two clusters. The closeness
centrality is somewhat more difficult to interpret, when most nodes have the
same closeness. The betweenness measure clearly indicated the two nodes
that acts as a bridge between the two clusters. The flow of information
is large through these nodes and severing the edge between then would
separate the clusters further apart. The eigenvector centrality is highest in

95

Figure B.1: The degree distribution, closeness centrality, betweenness centrality,
and eigenvector centrality for an association network of 62 dolphins [62].

the middle of the larger upper cluster, indicates somewhat larger prestige to
be one of the center nodes of that cluster.

All the compared centrality measures capture different aspects of the
structure of the social network. This implicates that multiple measures
should be used when analyzing large networks, that can not be visualized
in a clear way.

For more information about centrality measures not discussed in this ap-
pendix, e.g. Katz centrality, PageRank, Hubs, and authorities, transitivity,
reciprocity, structural balance, similarity etc., see Refs. [1, 5, 74].

B.1 Closeness centrality

Closeness centrality measure how central a node is by the distance to all the
other nodes in the network. The measure is defined as the inverse distance
to all other nodes in the network [89]

cc(i) =

∑
j∈V

d(i, j)

−1

(n− 1) , (B.1)

where i, j ∈ V (G), the node set of the graph and d(i, j) is the geodesic

96

distance between nodes i and j. To calculate the closeness of a node, one
must therefore calculate the geodesic between all pairs of nodes in the net-
work. This makes the estimation of the closeness centrality quite time con-
suming, first to calculate all the shortest paths using the Dijkstra’s algorithm
(see previous appendix) and then comparing the results. One can show that
the complexity of closeness calculations is O(n2 log n+ nm). [75]

B.2 Betweenness centrality

Betweenness centrality uses the number of geodesics between pairs of nodes,
in which a single node vi or edge participate ei as a measure of centrality. A
more central (important) node or edge should have many paths transversing
it. This in some sense accounts for the amount of information that flows
thorough an edge or a node. This measure is defined by Refs. [88, 75] as

cb(i) =
∑

s 6=t6=i∈V

σ(s, t|v)

σ(s, t)

2

(n− 1)(n− 2)
, (B.2)

where σ(s, t|i) is the total number of shortest paths between s and t
passing through i (an edge or node), and σ(s, t) =

∑
i σ(s, t|i) i.e. the to-

tal number of unique shortest paths between nodes s and t. The simplest
implementation of this calculation is of order O(n3), but a clever solution
discussed in [74] reduces the complexity to O(nm). A related measure is
the max-flow centrality measure in which all paths between pairs of nodes
intersecting a selected node vi or edge ei are counted.

B.3 Eigenvector centrality

Eigenvector centrality accounts for the prestige of a node in the network.
This measure is closely related to the PageRank algorithm that is (was) used
in the search engine Google and is defined following Refs. [90, 75] as

ce(j) = α
∑

{i,j}∈E(G)

cEk(i), (B.3)

where cEk = (cEk(l))
>, l = 1, 2, . . . , n, are the solution to the eigenvalue

problem AcEk = 1
αcEk, and A is the adjacency matrix of the network.

Often one uses the largest eigenvalue as α−1 and it is a good choice for
simple undirected graphs [90]. Standard methods from computational linear
algebra can solve this problem in O(n2). [75]

97

Appendix C

Notation

X = [Xij] Matrix, X, with Xij as the element on row i and column j.
x = (xi) Vector, x, with xi as the element with index i.
P[X] Probability of x = X.
E[X] Expected value of a random variable X.
V[X] Variance of a random variable X.

MSE[X] Mean Square Error of X, i.e. MSE[X] = E
[
(X − µX)2

]
.

Cov[X,Y] Covariance of X and Y , i.e. Cov[X,Y] =
E [(X − µX) (Y − µY)].

δ(·) Kronecker delta function, δ(x, y) = 1 if and only if all vari-
ables in the argument are equal and δ(x, y) = 0 otherwise.

d·e Ceiling function, rounds upwards to the nearest integer.

A Adjacency matrix, Aij = 1 if an edge between nodes i and j
exist and 0 otherwise.

G(V,E) A graph with node (vertex) set, V = V (G), and edge set,
E = E(G).

ki Degree of node i ∈ V (G).
n Number of nodes in a network G, n = |V (G)|.
m Number of edges in a network G, m = |E(G)|.

N (µ, σ2) Normal distribution with mean µ and variance σ2.
U(a, b) Uniform distribution between in the interval [a, b].
B(p) Bernoulli distribution with success probability p.

98

Appendix D

Abbervations

NP Non-Polynomial complexity.
TFC Two-step Fusion of Communities (Section 4.3.1 on p. 39)
NFC Node-based Fusion of Communities (Section 4.3.2 on p. 41)
CFC Community-based Fusion of Communities (Section 4.3.3 on p. 42)

EB Divisive algorithm based on betweenness (Section 2.4.1 on p. 16)
GA Greedy agglomerative method (Section 2.4.2 on p. 18)
SM Spectral method (Section 2.4.3 on p. 18)
SP Spin glass algorithm (Section 2.4.4 on p. 19)
WT Random walk on networks (Section 2.4.5 on p. 21)
LP Label propagation (Section 2.4.6 on p. 22)

NMI Normalized Mutual Information (Section 5.4.2 on p. 55)

99

	Introduction
	Clustering analysis and community detection
	Data clustering
	Ensemble clustering
	Community detection
	Algorithmic community detection

	Uncertain and imperfect networks
	Observation model
	Generalizing the observation model
	Probability theory
	Dempster-Shafer theory
	Fuzzy-Set theory

	Detecting communities in imperfect networks
	Sampling candidate networks
	Detecting candidate communities
	Merging candidate communities
	Confidence level of communities

	Simulation experiments
	Test networks
	Generating uncertain networks
	Generating imperfect networks
	Evaluating community structures

	Results and discussion
	Improving community detection by merging
	Simple method for uncertain networks
	General method for uncertain networks
	General method for imperfect networks
	Unsupervised evaluation and confidence levels

	Concluding Remarks
	Graph theory
	Elementary graph theory
	Algebraic graph theory
	Spectral graph partitioning
	Common problems related to graphs

	Social Network Analysis
	Closeness centrality
	Betweenness centrality
	Eigenvector centrality

	Notation
	Abbervations

